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A B S T R A C T

In classical autonomous racing, a perception, planning, and control pipeline is employed to navigate vehicles
around a track as quickly as possible. In contrast, neural network controllers have been used to replace either
part of or the entire pipeline. This paper compares three deep learning architectures for F1Tenth autonomous
racing: full planning, which replaces the global and local planner, trajectory tracking, which replaces the
local planner and end-to-end, which replaces the entire pipeline. The evaluation contrasts two reward signals,
compares the DDPG, TD3 and SAC algorithms and investigates the generality of the learned policies to different
test maps. Training the agents in simulation shows that the full planning agent has the most robust training
and testing performance. The trajectory tracking agents achieve fast lap times on the training map but low
completion rates on different test maps. Transferring the trained agents to a physical F1Tenth car reveals
that the trajectory tracking and full planning agents transfer poorly, displaying rapid side-to-side swerving
(slaloming). In contrast, the end-to-end agent, the worst performer in simulation, transfers the best to the
physical vehicle and can complete the test track with a maximum speed of 5 m/s. These results show that
planning methods outperform end-to-end approaches in simulation performance, but end-to-end approaches
transfer better to physical robots.
1. Introduction

Autonomous racing is the task of calculating speed and steering ref-
erences that move a vehicle around a race track as quickly as possible.
Classical approaches to autonomous racing use a perception (calculate
the vehicle’s track position), planning (generating control references)
and control (executing control references) pipeline that use vehicle
models to calculate optimal control actions. In contrast, deep learning
methods replace part, or the entire pipeline with a neural network
that maps an input vector to the control actions. Deep reinforcement
learning (DRL) trains neural networks to map state vectors (informa-
tion describing the environment) to control actions from experience,
requiring only a reward signal to indicate how good or bad each action
is. Fig. 1 shows how deep learning architectures for autonomous racing
can be categorised into full planning, trajectory tracking and end-to-end
approaches based on the input vector used by the agent.

Full planning architectures combine the vehicle’s sensor readings
(such as LiDAR scans, speed, etc.) with information about the upcoming
section of the race track, such as centre-line waypoints, to form the
state vector (Fuchs, Song, Kaufmann, Scaramuzza, & Durr, 2021). Tra-
jectory tracking designs aim to improve the planner’s performance by
adding upcoming trajectory waypoints with optimal speed references
into the state vector. Full planning and trajectory tracking approaches
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Fig. 1. We compare full planning, trajectory tracking and end-to-end deep learning
architectures for controlling autonomous racing cars.

aim to improve the computation time required by optimisation ap-
proaches (Chisari, Liniger, Rupenyan, Van Gool, & Lygeros, 2021),
while maintaining high levels of performance (Cai, Mei, Tai, Sun, &
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Fig. 2. The classical racing pipeline using a trajectory generator offline and localisation
and trajectory following module online.

Liu, 2020). While planning techniques have demonstrated good per-
formance (Wurman et al., 2022), they are still limited by requiring
localisation and thus a mapped environment.

End-to-end methods map raw sensor data (LiDAR scans or camera
images) directly to control actions (Cai, Wang, Huang, Liu, & Liu,
2021; Hamilton, Musau, Lopez, & Johnson, 2022). Unlike classical
approaches, end-to-end methods can plan control actions directly from
raw sensor data. They have the advantage of not requiring an explicit
vehicle model or real-time processing, and the solutions are flexible to
unmapped tracks not seen during training (Bosello, Tse, & Pau, 2022).
The limitations of end-to-end approaches are performance, with many
solutions limited to low, constant speeds (Evans et al., 2022; Hamilton
et al., 2022) and safety with agents achieving low lap completion
rates (Brunnbauer et al., 2022).

This paper contributes an extensive examination of full planning,
trajectory tracking and end-to-end DRL architectures for autonomous
racing through:

1. Comparing the reward, lap progress, crash rate and lap time
during training DRL agents for F1Tenth racing.

2. Analysing the trained agent’s lap times, success rates, speed
profiles, and racing line deviations.

3. Evaluating the simulation-to-reality transfer by contrasting be-
haviour in simulation and a physical vehicle.

2. Literature study

We provide an overview of classical approaches to autonomous
racing that use vehicle models and optimisation to plan and follow a
trajectory. Learning techniques for autonomous racing are studied in
the categories of planning methods that require the vehicle’s location
and end-to-end methods that replace the entire pipeline with a neural
network. Table 1 provides a summary of the classical, learned planning
and end-to-end learning methods referenced.

2.1. Classical racing

The classical racing approach, shown in Fig. 2, calculates an optimal
trajectory and then uses a trajectory following algorithm to track
it (Betz et al., 2022). During the race, the localisation module uses the
LiDAR scan to calculate the vehicle’s pose. The path-follower uses the
vehicle’s pose and optimal trajectory waypoints to calculate the speed
and steering angles that control the vehicle.

Trajectory optimisation techniques calculate a set of waypoints
(positions with a speed reference) on a track that, when followed, lead
the vehicle to complete a lap in the shortest time possible (Christ,
Wischnewski, Heilmeier, & Lohmann, 2021). A common approach gen-
erates a minimum curvature path and then a minimum time speed
profile (Heilmeier et al., 2020).

Localisation approaches for autonomous racing depend on the sen-
sors and computation available. Full-sized racing cars often fuse GNSS
and other sensors (Wischnewski et al., 2022), and scaled cars use a
LiDAR as input to a particle filter (O’Kelly, et al., 2020; Walsh &
Karaman, 2018; Wang, Han, & Vaidya, 2021). Localisation methods
2

enable classical planning since the vehicle can determine its location
on a map but are limited by requiring a map of the race track and,
thus, are inflexible to unmapped tracks.

Model-predictive controllers (MPC), that calculate receding horizon
optimal control commands (Tătulea-Codrean, Mariani, & Engell, 2020;
Wang et al., 2021), and pure pursuit path-followers, that geometrically
track a path (Becker et al., 2023; O’Kelly, Zheng, Jain, et al., 2020),
have been used for trajectory tracking. These methods transfer well to
physical vehicles, with a novel pure pursuit algorithm controlling a ve-
hicle at over 8 m/s at the limits of the non-linear tyre dynamics. These
classical methods produce high-performance results, accurately track-
ing the optimal trajectory, but are limited by requiring the vehicle’s
location on the map.

2.2. Planning architectures

Planning architectures can be split into full planning approaches that
replace the global (offline) and local (online) planner with a neural
network, and trajectory tracking methods that replace only the local
planner.

2.2.1. Full planning
Full planning methods that use sensor data and track information

have demonstrated high performance while maintaining flexibility to
different tracks (Fuchs et al., 2021). In Grand Turismo Sport, a hybrid
state vector with the vehicle’s current speed and acceleration, the
curvature of upcoming waypoints and 66 range finder measurements
were used (Fuchs et al., 2021). Similarly, Wurman et al. (2022) showed
that using a complex state vector leads to outracing world champions.
Comparable approaches combining state variables and LiDAR scans or
other upcoming track information for autonomous racing have been
evaluated in simulated F1Tenth racing (Tătulea-Codrean et al., 2020)
and full-size vehicle simulators (Remonda, Krebs, Veas, Luzhnica, &
Kern, 2021). While these approaches have demonstrated exceptional
performance in racing games and simulators, their performance for
physical robots is unknown.

2.2.2. Trajectory tracking
Deep reinforcement learning agents have been combined with an of-

fline trajectory optimiser for high-performance control in autonomous
racing (Dwivedi, Betz, Sauerbeck, Manivannan, & Lienkamp, 2022;
Ghignone, Baumann, & Magno, 2023). Ghignone et al. (2023) uses a
state vector with the vehicle’s velocity vector, heading angle a list of
upcoming trajectory points. Their results in simulated F1Tenth racing
demonstrated improved computational time, better track generalisation
and more robustness to modelling mismatch.

DRL agents have demonstrated exceptional performance in au-
tonomous drifting, where agents can track a precomputed trajectory
at the non-linear tyre limits (Cai et al., 2020; Orgován, Bécsi, & Aradi,
2021). Cai et al. (2020) used a DRL agent with a state consisting of the
upcoming waypoints (including the planned slip angle) and the current
vehicle state to control a vehicle in the Speed Dreams racing simulator.
Their results showed that the DRL agent could control the vehicle while
drifting through corners in many complex environments and generalise
to different vehicles.

While full planning and trajectory tracking approaches have demon-
strated promising results in simulation, their performance on physical
vehicles is unknown due to a lack of investigation into the simulation-
to-reality transfer (see Table 1).
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Table 1
Classical, planning and end-to-end approaches to autonomous racing with results in simulation and physical vehicles.

Category Method Platform Simulation result Physical result

Classical Learning MPC (Wang et al., 2021) F1Tenth Optimal racing up to 7 m/s in simulation and reality

Model and acceleration pure pursuit (Becker et al., 2023) F1Tenth Racing at the non-linear tyre limits with speeds over
8 m/s in simulation and reality

Planning

Full planning for racing games (Fuchs et al., 2021;
Wurman et al., 2022)

Grand Turismo
Sport

Outperforms world champion
gamers

No physical tests

Planning for racing (Tătulea-Codrean et al., 2020;
Vianna, Goubault, & Putot, 2021)

F1Tenth 5 m/s (Tătulea-Codrean et al.,
2020) 3 m/s (Vianna et al., 2021)

No physical tests

Trajectory tracking for racing (Dwivedi et al., 2022;
Ghignone et al., 2023)

F1Tenth Outperforms path tracking No physical tests

Trajectory tracking for drifting (Cai et al., 2020;
Orgován et al., 2021)

Speed Dreams &
Carla

Able to control the vehicle in
non-linear environments

No physical tests

End-to-end Driving with LiDAR (Evans et al., 2022; Hamilton et al.,
2022; Ivanov et al., 2020)

F1Tenth Constant speeds of 1 m/s (Hamilton et al., 2022), 2 m/s (Evans
et al., 2022) and 2.4 m/s (Ivanov et al., 2020) in simulation
and reality

Racing with LiDAR (Bosello et al., 2022; Brunnbauer
et al., 2022)

F1Tenth Speeds ranging up to 5 m/s Completes test lap
2.3. End-to-end architectures

End-to-end architectures map raw sensor data directly to control
commands. While camera images have been used in end-to-end so-
lutions (Jaritz, De Charette, Toromanoff, Perot, & Nashashibi, 2018),
we focus on methods using LiDAR scans (Hamilton et al., 2022).
End-to-end architectures have commonly been used for autonomously
driving F1Tenth vehicles at constant speeds of 1 m/s (Hamilton et al.,
2022), 2 m/s (Evans et al., 2022), and 2.4 m/s (Ivanov et al., 2020).
End-to-end methods have the significant advantage of not requiring
localisation since they can directly use the LiDAR scan as input to
the agent. Not requiring localisation allows them to be transferred to
different environments (Bosello et al., 2022; Evans et al., 2022) and
achieve zero-shot transfer to physical vehicles (Hamilton et al., 2022).

End-to-end F1Tenth autonomous racing has been approached with
model-free (Bosello et al., 2022), and model-based (Brunnbauer et al.,
2022) algorithms, reaching up to 5 m/s in simulation. While these ap-
proaches have demonstrated the ability to complete a lap on a physical
vehicle, several problems, such as constant swerving (Brunnbauer et al.,
2022), were observed. It remains to be investigated how high-speed
racing transfers to physical cars.

3. Racing architectures

3.1. Problem description

The general racing problem is to use the onboard sensor readings to
select control signals that move the vehicle around the track as quickly
as possible. Racing cars have a 2D LiDAR scanner that provides geo-
metric information regarding the environment and perception method
(such as a particle filter) that can estimate the vehicle’s odometry on a
map.

Racing vehicles are commonly modelled using the bicycle model.
Fig. 3 shows how the model represents the position 𝑥, 𝑦 and orientation
𝜃 on a map, speed 𝑣, steering angle 𝛿 and slip angle 𝛽. The control inputs
are speed 𝑣 and steering angle 𝛿 references that a low-level controller
follows.

Deep Learning Problem: Fig. 4 shows how the deep learning
problem for autonomous racing uses a neural network that selects
steering and speed actions.

The actions control the vehicle in the racing environment. A crucial
part of the deep learning formulation is the state passed from the
environment to the agent. This work evaluates different state vectors
to investigate the effect of the state vector on agent performance. We
now describe the composition of the full planning, trajectory tracking
and end-to-end state vectors.
3

Fig. 3. Bicycle model showing how the position, orientation, speed, steering angle and
slip angle are represented.

Fig. 4. The deep learning formulation uses a neural network to select actions.

3.2. Planning architectures

Planning architectures replace the classical planning components
with a neural network agent that has access to the vehicle’s pose and
a track map. Some approaches have replaced the complete planning
pipeline, while others have retained the optimal trajectory generator
and use a neural network for trajectory tracking. The aim of replac-
ing the planner is that optimisation-based planners, such as model
predictive control, are computationally expensive and brittle to model
mismatch.

3.2.1. Full planning
The full planning architecture replaces the global and local planners

with a neural network agent. The complete planning task uses a race
track map, the vehicle’s odometry and incoming sensor data to plan
speed and steering commands. These methods have the advantage of
not requiring a precalculated optimal trajectory and, thus, being less
dependent on the vehicle model.

Fig. 5 shows the state vector for the full planning architecture,
consisting of the vehicle’s speed, steering angle, a set of upcoming
centre line points, and the current LiDAR scan. The LiDAR scan is
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Fig. 5. The full planning architecture uses a state vector consisting of beams from the
LiDAR scan, a set of upcoming centreline points, and the linear speed and steering
angle.

Fig. 6. Trajectory tracking state vector consisting of upcoming waypoints and speed
references on the optimal trajectory and the linear and steering angle.

included since the vehicle must know the track geometry to select an
optimal racing line. The state is written as 𝐬𝑡 = [𝐛𝑡,𝐂, 𝑣𝑡, 𝛿𝑡], where 𝐂
is a set of 𝑁waypoints upcoming centre line points transformed into the
vehicle’s coordinate frame.

3.2.2. Trajectory tracking
The task of the local planner is to follow a predefined set of

waypoints called the race line. Each track’s race line is generated using
a trajectory optimisation algorithm (Heilmeier et al., 2020). The racing
line is a set of evenly spaced ordered waypoints containing an 𝑥, 𝑦
position and speed.

The state vector, shown in Fig. 6, comprises the vehicle’s current
speed, steering angle, and 𝑁waypoints from the racing line. The state
is 𝐬𝑡 = [𝐖, 𝑣𝑡, 𝛿𝑡], where 𝐖 is the set of upcoming relative waypoints.
The waypoints are transformed from the global coordinate frame into
the vehicle’s reference frame by translation (according to the vehicle’s
positions) and rotation (according to the vehicle’s orientation).

3.3. End-to-end architecture

The end-to-end learning architecture replaces the entire planning
pipeline with a neural network meaning that the LiDAR scan is used
as the state vector. End-to-end solutions have the advantage of not
requiring any preprocessing or localisation on the LiDAR scan. The full
LiDAR scan has a field of view (FOV) of 3/2 𝜋 radians and 1080 beams.
A subset of 𝑁beams is selected from the LiDAR scan and used as input for
the network. The resulting set of beams is written 𝐛 = [𝑏1, 𝑏2,… , 𝑏𝑁 ].

The vehicle’s motion is communicated to the agent by stacking the
previous and current LiDAR scans and including the linear speed in the
state vector. The end-to-end state vector, shown in Fig. 5, is written as,
𝐬𝑡 = [𝐛𝑡−1,𝐛𝑡, 𝑣𝑡].

4. Methodology

We outline the methodology employed for conducting simulation
and real-world experiments aimed at comparing three different ar-
chitectures on the F1Tenth platform. A preliminary overview of rein-
forcement learning, specifically focusing on the soft actor-critic (SAC),
is presented. Subsequently, the F1Tenth racing platform, our exper-
imental setup and the implementation details are described. Finally,
4

Fig. 7. The end-to-end architecture uses a state of the previous and current LiDAR
scan and the vehicle’s speed.

we explain the process of hyperparameter selection for the number of
beams and the number of waypoints.

4.1. Reinforcement learning preliminary

Reinforcement learning problems are modelled as Markov Decision
Processes (MDPs) (Sutton & Barto, 2018). MDPs contain states 𝑠 in the
state space , actions 𝑎 in an action space , a transition probability
function of how states change based on the action and a reward func-
tion that is used to calculate a reward for a state–action combination.
DRL algorithms use the agent’s policy of selecting actions based on
a state to collect experience to train the agent to maximise a reward
signal, thus producing the desired behaviour. We present a preliminary
on each of the three algorithms considered in this work.

4.1.1. Deep deterministic policy gradient (DDPG)
Deep deterministic policy gradient (DDPG) methods can select con-

tinuous actions for robotic control (Lillicrap et al., 2015). DDPG is an
actor-critic algorithm that uses a policy network 𝜇 to select actions and
a Q-network 𝑄 to approximate the expected return for a state action
pair (Q-value). The algorithm uses model networks, trained and used
to select actions and target networks to calculate the target values to
update the networks. DDPG is an off-policy algorithm, meaning that
experience tuples of state, action, next state and reward are stored
in a replay buffer. After each action has been selected, a set of 𝑁
transitions is randomly sampled from the replay buffer and used to train
the networks.

The model Q-network is trained to learn the expected return for
each state–action pair by minimising the loss between the current Q-
value estimates 𝑄(𝑠𝑗 , 𝑎𝑗 ) and a calculated Q-target 𝑦𝑖 for each transition
𝑗 in the sampled batch. The bootstrapped targets are calculated using
the Bellman equation by adding the reward earned and the discounted
Q-value for the next state if the agent followed its target policy,

𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄′(𝑠𝑗+1, 𝜇′(𝑠𝑗+1)), (1)

where 𝛾 is the discount factor.
The model policy network selects continuous deterministic actions

based on a state. Noise sampled from a random distribution is added to
each action for exploration. The policy network, parameterised by 𝜃, is
trained to maximise the objective (𝐽 (𝜃)) of selecting actions with high
Q-values. The gradient that maximises the objective 𝐽 (𝜃) is calculated
as,

∇𝜃𝐽 (𝜃) =
1
𝑁

∑

𝑗
∇𝜃𝑄(𝑠𝑗 , 𝜇(𝑠𝑗 )). (2)

After each network update, a soft update is applied to adjust the target
networks towards the model networks. In our implementation, we used
a discount factor of 0.99, learning rates of 0.0005 for the actor and
0.001 for the critic, batch size of 100, and soft update temperature of
0.005.
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4.1.2. Twin-delayed DDPG (TD3)
The twin-delayed DDPG (TD3) algorithm features three improve-

ments over the original DDPG algorithm, (1) using a pair of Q-networks,
(2) delaying policy updates, and (3) target policy smoothing (Fujimoto,
Hoof, & Meger, 2018). Using two Q-networks is done to prevent the
agent from overestimating the expected return by using the smallest Q-
value to calculate the Q-target. The frequency of the policy updates is
slowed down to improve the stability of the updates. In our implemen-
tation, after every training step, the Q-networks are updated twice, and
the policy once. The target policy that is used to calculate the Q-target
values (Eq. (1)) is smoothed by adding random noise to each action to
prevent the Q-function learning sharp peaks or troughs. Taking these
changes into account, the TD3 Q-targets are calculated as,

𝑦𝑗 =𝑟𝑗 + 𝛾 min
𝑖=1,2

𝑄𝜃′𝑖 (𝑠
′
𝑗 , 𝜇(𝑠

′
𝑗 ) + 𝜖)

𝜖 ∼ clip( (0, 𝜎),−𝑐, 𝑐)
(3)

In the equation, 𝛾 is the discount factor, 𝑖 is the number of the Q-
network (i.e. 𝑄𝜃′1 , 𝑄𝜃′2 ), 𝜇 is the actor network, 𝜖 is the clipped noise,
and 𝑐 is the noise clipping constant. In our implementation, we used a
batch size of 100, a discount factor of 0.99, a soft update temperature
of 0.005, exploration noise with a standard deviation of 0.1, policy
smoothing noise with a standard deviation of 0.2 and a noise clip and
0.5.

4.1.3. Soft actor-critic (SAC)
The soft actor-critic (SAC) algorithm improves the original DDPG al-

gorithm by redefining the object to maximise policy entropy (Haarnoja
et al., 2018). By doing so, the SAC algorithm inherently promotes
exploration by encouraging the agent to select the most unpredictable
policy that maximises the reward.

The algorithm uses a single policy network 𝜋, two model Q-networks
and two target Q-networks. For each state, the policy 𝜋 outputs a mean
𝜇 and standard deviation 𝜎 to sample actions using the reparameteri-
sation trick. Actions are selected as 𝜋(𝑠) = tanh(𝜇(𝑠) + 𝜎(𝑠)𝜉), where 𝜉 is
sampled from a normal distribution with a mean of 0 and standard
deviation of 1 as 𝜉 ∼  (0, 1). The policy objective is updated to
include entropy, calculated as the negative log probability of selecting
an action. The SAC policy gradient is written as

∇𝜃𝐽 (𝜋) =
∑

𝑗
∇𝜃 min

𝑖=1,2
𝑄𝜙𝑖 (𝑠𝑗 , �̃�𝑗 ) − 𝛼∇𝜃 log𝜋𝜃

(

�̃�𝑗 |𝑠𝑗
)

. (4)

In Eq. (4), the next actions �̃�𝑗 are sampled from the policy as �̃�𝑗 ∼
𝜋𝜃(⋅|𝑠𝑗 ). The objective maximises the estimated Q-values using the
minimum of the pair of Q-networks (same as TD3). The SAC gradient
then maximises the entropy by subtracting the log probabilities of the
sampled actions, which are scaled by the parameter 𝛼.

The Q-target values are calculated to maximise the entropy for the
next actions as,

𝑦 = 𝑟 + 𝛾
(

min
𝑖=1,2

𝑄𝜙′𝑖 (𝑠
′, �̃�′) − 𝛼 log𝜋𝜃(�̃�′|𝑠′)

)

. (5)

In Eq. (5), the Q-target is the reward plus the discounted Q-value for
the next state minus the log probabilities of the next actions �̃�𝑗 . The
Q-networks are updated towards the targets using the mean squared
error (MSE) loss. Finally, the scaling parameter alpha is auto-tuned
towards a desired entropy ̃ by minimising the distance between the
log probabilities of the next actions and the desired entropy. The
objective is written as,

∇𝛼𝐽 (𝛼) =
∑

𝑗
∇𝛼

(

−𝛼(log𝜋𝜃(�̃�𝑗 |𝑠𝑗 ) + ̃)
)

. (6)

In our implementation, we used a batch size of 100, discount factor
𝛾 of 0.99, soft update temperature of 0.01, and learning rate of 0.001
5

with the Adam optimiser.
Fig. 8. The F1Tenth vehicle used for the physical experiments.

Fig. 9. Map shapes of the AUT, ESP, GBR and MCO (left to right) tracks.

4.2. F1Tenth platform

F1Tenth racing cars are 1/10th the size of real F1 vehicles and are
used as a sandbox for developing autonomous algorithms (Betz et al.,
2022). The platform focuses on high-performance, safe algorithms for
cyber–physical systems. Fig. 8 shows our F1Tenth vehicle, which is
equipped with a LiDAR scanner for sensing the environment, an NVIDIA
Jetson NX as the central computation platform, a variable electronic
speed controller (VESC) and drive motor to move the vehicle forwards,
and a servo motor to steer the front wheels.

A Gym-style Python simulator that uses the single-track bicycle
model is available that is used to train the agents (O’Kelly, Zheng,
Karthik, & Mangharam, 2020). The simulator provides the planner with
a state consisting of the LiDAR scan, location and speed. The simulator
and the physical vehicle use a planning frequency of 10 Hz. The planner
then calculates an action that is returned to the simulator. This planning
and acting loop is repeated until a lap is completed or the vehicle
crashes. Fig. 9 shows the shapes of the tracks.

The vehicle uses the ROS2 middleware for the sensors and software
components to communicate with each other. ROS2 nodes are written
that extract the required data from the sensors and form the state
vectors used by the agent. The vehicle’s odometry is estimated using
a particle filter that implements scan matching (Walsh & Karaman,
2018). The steering angle cannot be directly measured and is recur-
sively estimated as 𝛿𝑡 = 0.5𝛿𝑡−1+0.5𝛿a, where 𝛿a is the steering command
selected by the agent.

All the quantities that are passed into and out of the neural network
are scaled into the range [−1, 1] by using the relevant maximum. For
the LiDAR beams, the maximum value is 10 m, for the speed 8 m/s,
and for the steering angle 0.4 rad. The upcoming waypoints are spaced
20 cm apart and scaled using a maximum distance of 4 m. The output
values from the neural network are rescaled to speed and steering
references using the same values. The speed is rescaled to the range
[1, 𝑣max] to ensure the vehcile is never stationary.

4.2.1. Classical planner
The classic planner uses an optimal trajectory generated using the

method from Heilmeier et al. (2020), and the pure pursuit path follower
from Coulter (1992). The trajectory optimiser uses the centre line to
calculate a minimum curvature path. The vehicle dynamic limits and
friction parameters are then used to generate a minimum time speed
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Fig. 10. The cross-track and heading error reward uses the vehicle speed 𝑣𝑡, heading
error 𝜓 and cross-track distance 𝑑c.

profile. The pure pursuit path following algorithm tracks a reference
path using a lookahead distance to select a point to steer towards. Given
a lookahead point that is a lookahead distance 𝑙d away from the vehicle,
and at a relative heading angle of 𝛼, the steering angle 𝛿 is calculated
as,

𝛿 = arctan
(

𝐿 sin(𝛼)
𝑙d

)

, (7)

where 𝐿 is the length of the vehicle’s wheelbase.

4.2.2. Reward signals
After each timestep, a reward is calculated and given to the agent.

To train the agent to complete laps without crashing, the agent is
rewarded with the largest reward of 1 for completing a lap and pun-
ished with −1 if the vehicle crashes. Additionally, a shaped reward to
encourage fast racing behaviour is given to the agent. The reward is
calculated as,

𝑟 =

⎧

⎪

⎨

⎪

⎩

1 if lap complete
−1 if collision

𝑟shaped otherwise.
(8)

We consider two shaped reward signals to train the agents, the
cross-track and heading error reward and the trajectory-aided learning
reward signal. The cross-track and heading error signal rewards the
agent for speed in the direction of the centre line and punishes the
vehicle proportionally to the lateral deviation (Bosello et al., 2022).
The cross-track and heading error reward is calculated as,

𝑟CTH =
𝑣t
𝑣max

cos𝜓 − 𝑑c, (9)

where 𝑣𝑡 is the vehicle’s speed at timestep 𝑡, 𝑣max is the maximum speed,
𝜓 is the heading error (angle between the vehicle heading and the track
centre line), and 𝑑c is the cross-track distance. Fig. 10 shows how the
speed, heading error and cross-track distance are measured for a vehicle
on a race track segment.

The second reward signal considered is the trajectory-aided learning
(TAL) reward signal (Evans, Engelbrecht, & Jordaan, 2023), which
trains the agent for high-speed racing. The trajectory-aided learning
reward encourages agents to follow the racing line by using the differ-
ence between the agent’s actions and the actions that a classical planner
would have selected. The TAL reward is calculated as,

𝑟TAL = 1 − |𝐮agent − 𝐮classic| (10)

Fig. 11 graphically shows the comparison between the action selected
by the classic planner following the optimal trajectory and the agent
action. The shaped reward is scaled by 0.2 to ensure it is much smaller
than the rewards for crashing and lap completion.

4.3. Hyperparameter tuning

The hyperparameters are tuned by investigating how well the neural
network can fit an expert dataset. The dataset is built using the classic
planner to race for a single lap on each of the four test maps. At each
timestep, the vehicle’s state and LiDAR scan and the planner’s actions
are saved to form the dataset. For each test, a dataset is constructed by
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Fig. 11. The trajectory-aided learning reward penalises the difference between the
agent’s actions and those selected by a classical planner following the optimal
trajectory.

Fig. 12. The training and testing losses from tuning the number of neurons used per
layer in the neural network.

generating the relevant state vector at each timestep in the data batch.
The networks are trained for 2000 epochs of sampling 100 state–action
pairs and evaluating the mean squared error (MSE) loss between the
true and predicted actions. A 90/10 training/testing split is used. Each
experiment is seeded and repeated 10 times with different seeds. The
training and testing losses are evaluated by averaging the loss from 10
sampled mini-batches. The square root of the loss (RMSE) value is used
in the results.

4.3.1. Neural network size
We aim to select the smallest neural network that can feasibly

represent a policy. smaller networks are faster to train and more
computationally efficient. However, if the network is too small, it will
not be able to learn the dynamics. Therefore, we evaluate how many
neurons per layer are required for the testing loss to stop decreasing.
We use the end-to-end state vector with 20 beams for this test, since it is
the largest input vector out of the three architectures. Two-layer multi-
layer perceptron networks are used, since this is a common architecture
in autonomous racing (Chisari et al., 2021; Hamilton et al., 2022). Tests
are done with a two-layer network with numbers of neurons ranging
from 10 to 300. The hidden layers use the ReLU activation function,
and the output layer uses the tanh function. The Adam optimiser is used
with a learning rate of 0.001.

Fig. 12 shows the training and testing losses plotted against the
number of neurons used per layer in the neural network. While using
only ten neurons gives a large loss above 0.14, the loss decreases with
an increasing number of neurons. While the training loss continues to
increase, the testing loss levels out when using more than 100 neurons.
Therefore, 100 neurons per layer are used for all further tests. We note
that we keep the number of neurons the same for each test so that the
architectures themselves can be evaluated.

4.3.2. State vector parameters
Fig. 13 shows the training and testing losses for tuning the number

of beams and number of waypoints used.
The number of beams required is evaluated using 5, 10, 12, 15, 20,

30 and 60 beams in the end-to-end architecture. The loss graph for the
number of beams (left) shows that using fewer beams results in a larger
loss than using more beams. Using more than 20 beams does not have
a significant impact on the loss, and therefore, 𝑁 is selected as 20.
beams
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Fig. 13. The losses from tuning the number of beams and the number of waypoints
used in the state vectors.

The number of waypoints required is evaluated using 0, 1, 2, 4, 6,
8, 10 and 20 waypoints and the trajectory tracking architecture. The
graph shows a similar pattern of large losses when using few waypoints,
and smaller losses when using many waypoints. The performance flat-
tens out when using more than 10 waypoints, and therefore, 𝑁waypoints
is selected as 10. All further experiments use 20 LiDAR beams and 10
upcoming waypoints.

5. DRL simulation evaluation

The different architectures are evaluated by investigating the: The
full planning, trajectory tracking and end-to-end DRL architectures are
evaluated using three tests:

1. Reward signal comparison of the behaviour generated by the
cross-track and heading reward compared to the trajectory-aided
learning reward.

2. Training algorithm comparison of the DDPG, TD3 and SAC
algorithms for their impact on training and performance.

3. Policy generality investigation of how well the learned poli-
cies transfer to different maps.

In each of the tests, the focus is to show the differences between
the different architectures. For all the tests, agents are trained for
60k training steps, and then 20 test laps are run. All the simulation
experiments are repeated three times.

5.1. Reward signal comparison

We compare the cross-track and heading reward and the trajectory-
aided learning reward by training agents using each reward on the
GBR map. The reward signal comparison tests use the soft actor-critic
(SAC) algorithm. The main metric used to analyse the learning is the
average track progress made by the agent. The average track progress is
a moving average of the progress made by the vehicle for each episode
before the car crashes or completes a lap. In the reward signal study,
the episode reward is also used to explain the learned behaviour.

Fig. 14 shows the average progress and episode reward during
training from each of the reward signals. The cross-track and head-
lining (CTH) average progress demonstrates a significant difference
between the architectures, with the full planning architecture achieving
around 90%, the trajectory tracking agent 60% and the end-to-end
agent 50%. The TAL reward trains all the agents to achieve higher
average progress, with the full planning and trajectory tracking agents
achieving near 100% and the end-to-end agent around 90%.

The rewards earned by the CTH agents follow a similar pattern to
the average progress of the full planning earning the most reward,
followed by the trajectory tracking and finally, the end-to-end agent.
The TAL agents show an interesting pattern of the trajectory tracking
agent achieving a higher reward than the full planning agent from
around 15k steps. This suggests that the trajectory tracking agent
selects actions that are more similar to the classical planner (following
the optimal trajectory) than the other agents.
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Fig. 14. Average progress and episode reward during training with the cross-track and
heading (CTH) and trajectory-aided learning (TAL) reward signals on the GBR map.

Fig. 15. Average progress, completion rate and lap times achieved by agents trained
with the cross-track and heading (CTH) and trajectory-aided learning (TAL) reward
signals.

Fig. 16. The distribution of absolute slip angles from tests laps of agents trained with
the cross-track and heading (CTH) and trajectory-aided learning (TAL) reward signals.

Fig. 15 shows the average progress, completion rate and lap times
achieved by agents trained with the cross-track and heading (CTH) and
trajectory-aided learning (TAL) reward signals. The agents were trained
and tested on the GBR map. The average progress values correspond
well to the training graph, with the CTH agents achieving around
85%, 60% and 50%, respectively. The trajectory-tracking and end-to-
end agents trained with the CTH reward have a low completion rate
of around 8% and 25%, indicating that very few laps are completed.
The CTH full planning agent achieves a significantly higher completion
rate indicating that the full planning agent is more robust to different
rewards than the other architectures. While the CTH agents have criti-
cally low lap completion rates, they have fast lap times, outperforming
the TAL agents. This is further investigated by plotting the distribution
of slip angles for the agents trained with the two rewards. The slip angle
is the difference between the vehicle’s velocity (direction of motion)
and orientation (which way the front of the vehicle faces).

Fig. 16 shows the slip angles from test laps of agents trained with
the cross-track and heading (CTH) and trajectory-aided learning (TAL)



Machine Learning with Applications 14 (2023) 100496B.D. Evans et al.
Fig. 17. The lateral and speed deviation for agents trained with the cross-track and
heading (CTH) and trajectory-aided learning (TAL) reward signals.

reward signals on the GBR map. The agents trained with the cross-track
and heading error reward have a higher number of large slip angles
than the TAL agents. The CTH agents have many slip angles above 0.2
radians, while most of the TAL agents do not have any slip angles above
0.2. The high-slip angles resulting from the CTH reward signal indicate
that the agent learns to exploit the simulator by causing the vehicle to
drift around parts of the track. This drifting behaviour is unstable and
not repeatable.

We consider the lateral and speed deviation for the agents trained
with each reward signal to the optimal trajectory. The lateral deviation
is the perpendicular distance between the optimal trajectory and the
vehicle, and the speed deviation is the absolute value of the difference
between the vehicle’s speed and the speed at the optimal trajectory
point. Fig. 17 shows the lateral and speed deviation for agents trained
with the cross-track and heading (CTH) and trajectory-aided learning
(TAL) reward signals tested on the GBR map. The general pattern is
that the TAL agents have lower lateral and speed deviations than the
CTH agents. Across both reward signals, the trajectory-tracking agent
has the lowest lateral deviation of the three DRL agents. This shows that
giving trajectory waypoints to the planner leads to the agent selecting a
more similar path to the optimal trajectory. In contrast, the TAL, end-to-
end agent, has the largest deviations, indicating that giving only LiDAR
scans leads to behaviour that is dissimilar to the optimal trajectory.
While the TAL reward improves on the cross-track and heading reward,
none of the agents can outperform the classical trajectory following
method.

The study on reward signals shows that the trajectory-aided learning
reward can train DRL agents to autonomous racing to achieve higher
average progresses during training and higher lap completion rates
after training. While the full planning architecture achieved around a
75% completion rate with the cross-track and heading reward, the other
two architectures achieved below 50% lap completion. This indicates
that the full planning architecture is the most robust to different
rewards, followed by the end-to-end architecture, and the trajectory
tracking architecture is very sensitive to reward. Studying the lateral
and speed deviations showed that the trajectory tracking architecture,
trained with the TAL reward, has the most similar behaviour to the
classical planner following the optimal trajectory. This indicates that
while sensitive, the trajectory tracking architecture shows the best
ability to replicate a specific behaviour.

5.2. Algorithm comparison

We use the DDPG, SAC and TD3 algorithms to train three agents
of each architecture for autonomous racing. These tests use the TAL
reward and the GBR map. We consider the differences during training
and the differences in the behaviour of the trained agents.
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Fig. 18 shows the average progress during training from using each
algorithm on the GBR map. All the agents trained with the DDPG
algorithm perform poorly with averages remaining around 50%. In
contrast, the SAC and TD3 algorithm both train the agents well, with
the average progresses reaching over 90%. The TD3 algorithm appears
to train the agents slightly faster and to higher average progress. With
all three algorithms, the full planning agent’s progress rises the fastest,
quickly reaching high values. The end-to-end agent trained with the
SAC algorithm takes around 50k steps to reach over 90% average
progress. The trajectory tracking agent generally remains between the
full planning and end-to-end agents. This indicates that the full plan-
ning agent is the most robust to different training algorithms, always
training quickly, and the end-to-end agent requires the most training
data to converge, training more slowly. Since only the SAC and TD3
algorithms can reliably train the agents to complete laps, we study their
training behaviour in more detail.

Fig. 19 shows the lap times during training of the agents trained
with the SAC and TD3 algorithms. When training with the SAC, all
the architectures show a pattern of starting with slower lap times and
as the training progresses, achieving faster lap times. In contrast, the
TD3 algorithm shows little change in lap times throughout training. It
is proposed that this is due to the maximum entropy formulation of
the SAC algorithm in contrast to the deterministic nature of the TD3
algorithm. The trajectory-tracking architecture has the least variance
between lap times, and the end-to-end architecture has the most. This
is possibly due to large differences between LiDAR scans compared to
upcoming trajectory points.

Fig. 20 shows the crash frequency per algorithm for each archi-
tecture. The agents trained with the SAC algorithm crash for a longer
period of time during training, indicating that the algorithm is trying all
possible actions before converging. The TD3 agents crash less than the
SAC agents. This pattern is similar to the lap times presented in Fig. 19,
indicating that the SAC algorithm fails more before learning, while
the TD3 algorithm learns faster by exploiting its current knowledge.
In comparing the architectures, the full planning architecture crashes
the least during training, completing almost all laps after 40k steps.
In contrast, the end-to-end agent has a high number of crashes during
training, still occasionally crashing at the end of training.

Fig. 21 shows the average progress and lap times from training
agents with the DDPG, SAC and TD3 algorithms. The DDPG agents
perform poorly, with all the agents having some repetitions below 70%
completion. Of the agents trained with the DDPG algorithm, the full
planning architecture performs the best, with two of the repetitions
reaching near 100% completion rate. The trajectory tracking average
is similar, with a large spread between the three repetitions. The end-
to-end architecture performs the worst, with all three repetitions below
75%. The inconsistency in the results highlights the shortcoming of the
DDPG algorithm of being brittle to random seeding.

The poor results achieved by the DDPG algorithm show that while
it has the potential to train agents, the performance is often poor
and lacks reliability. In contrast, the TD3 algorithm achieves near
100% completion rate for all of the architectures. The SAC algorithm
is slightly behind with around 90%, and the results are more spread
out. The agents trained with the TD3 algorithm all have near 100%
completion rates and similar lap times of around 40 s. The agents
trained with the SAC algorithm vary more between repetitions, with
the trajectory tracking agent’s completion rate ranging from 80%–
100% and the end-to-end agent’s lap times ranging from 40–60 s. This
indicates that the TD3 algorithm produces more repeatable behaviour
with less dependence on the random seeds.

The differences in lap times, specifically between the end-to-end
planner, are investigated by plotting the frequency of the vehicle speeds
for agents trained with each planner. Fig. 22 shows the frequency of the
vehicle speeds. While the full planning and trajectory tracking agents
have similar performance, there is a notable difference in the end-to-

end agent. The end-to-end agent trained with the SAC algorithm never
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Fig. 18. Average progress during training agents on the GBR map with the DDPG, SAC and TD3 algorithms.
Table 2
Lap times from agents trained on MCO and tested on four test maps compared to the classical planner.
TestMap AUT ESP GBR MCO

Classic planner 22.11 ± 0.00 47.85 ± 0.00 38.95 ± 0.00 35.51 ± 0.00

Full planning 21.52 ± 0.15 48.19 ± 2.38 42.46 ± 1.18 37.85 ± 0.12
Trajectory tracking 22.28 ± 0.81 49.81 ± 0.42 39.64 ± 1.58 36.08 ± 1.24
End-to-end 21.90 ± 1.42 49.25 ± 2.90 43.34 ± 3.21 38.14 ± 1.83
Fig. 19. Lap times during training agents with the SAC and TD3 algorithms on the
GBR map.

Fig. 20. Crash frequency during training agents with the SAC and TD3 algorithms on
he GBR map.

Fig. 21. The average progress and lap times from training agents with the DDPG, SAC
nd TD3 algorithms.
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selects high speeds, while the one trained with the TD3 algorithm does.
The result of this is slower speed selection. While it is not clear why the
end-to-end agent trained with the SAC algorithm selects lower speeds,
it could be related to the difficulty in racing at high speeds using only
LiDAR scans. This result indicates that the end-to-end architecture is
less robust to changes in algorithm compared to the full planning and
trajectory tracking architectures.

The investigation into algorithms showed that while the DDPG
algorithm produces inconsistent, poor completion rates, the TD3 and
SAC algorithms can train agents to achieve good racing performance.
The TD3 algorithm learns a racing policy without first learning slow
laps, while the SAC algorithm starts out learning slowly and steadily
improves. The TD3 algorithm produces repeatable results, with the
three repetitions being closely grouped. The SAC algorithm shows a
larger variance between results, indicating a greater dependence on
the seed used. The end-to-end architecture is the most sensitive to
the training algorithm, completing very few laps with the DDPG and
achieving slow lap times with the SAC algorithm.

5.3. Policy generality investigation

The agents are investigated for their ability to generalise and trans-
fer to maps other than the training maps. Agents of each architecture
are trained using the TAL reward and the TD3 algorithm on the MCO
and GBR maps before being tested on four maps (see Fig. 9). A quanti-
tative comparison of the completion rate and lap time performance is
presented, followed by a qualitative assessment of the performance.

5.3.1. Quantitative comparison
For each agent, 20 test laps are run on the AUT, ESP, GRB and MCO

maps. Fig. 23 records the average success rates from each train-test
combination.

The results in Fig. 23 show that the full planning agents learn the
most general behaviour, achieving near 100% success on all the maps
considered. The end-to-end agent achieves good performance on the
AUT map and over 80% on the ESP map. The trajectory-tracking agent
trained on the GBR map achieves below 60% and 40% success on
the AUT and ESP maps, respectively. This behaviour indicates that
the trajectory tracking architecture generalises less well to other maps
and is more dependent on the training map used. The graph also
indicates that the agents trained on the MCO map generalise to other
tracks better than agents trained on the GBR track. We further study
the performance by considering the lap times achieved by the agents
trained on the MCO map on the different tracks.

Table 2 shows the lap times for the agents trained on the MCO
map and tested on each of the four test maps. The classic planner
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Fig. 22. The frequency of vehicle speeds experienced by agents trained with the SAC and TD3 algorithms.
Fig. 23. Completion rates from testing vehicles trained on GBR and MCO maps on
four tracks.

times are shown for reference and have a standard deviation of 0 since
they do not depend on a random seed. On the training map, MCO, the
trajectory tracking agent, achieves the fastest average lap time of 36.08
s, followed by the full planning agent with 37.85 s, and the end-to-end
agent with 38.14 s. This indicates that the trajectory tracking agent
achieves the best racing performance on the training map, probably
due to tracking the optimal trajectory well (see Section 5.1). On the
AUT and ESP maps, the full planning agent achieves the fastest times
of 21.52 s and 48.19 s, respectively. Despite being the slowest on MCO
(the training map), the end-to-end agent outperforms the trajectory
tracking agent on both the AUT by 0.38 s and the ESP map by 0.56 s.
This indicates that the full planning and end-to-end agents learn more
general, transferable behaviour than the trajectory tracking agent. This
suggests that having LiDAR beams in the state vector leads to policies
that are robust to different maps.

5.3.2. Qualitative trajectory analysis
The reasons for results from the quantitative performance compar-

ison are investigated by comparing the behaviour of each agent. The
trajectory, speed profile and actions selected are used to represent the
behaviour.

Fig. 24 shows the trajectories from the full planning, trajectory
tracking, end-to-end and classical planners on a section of the MCO
track. The trajectories show that the classic planner selects the smooth-
est trajectories speeding up in the straights and slowing down in the
corners. The end-to-end trajectory contains no red sections indicating
the agent never reaches the vehicle’s maximum speed. The full planning
and trajectory tracking trajectories roughly track the pattern on the
classic planner speeding up in the straighter sections and slowing down
in the corners.

Fig. 25 shows the speed profiles for a section of the MCO track. The
classic planner smoothly speeds up to the maximum speed of 8 m/s, and
slows down around the corner sections. The trajectory tracking and full
planning agents also speed up to 8 m/s and sometimes have a higher
speed than the classic planner. The end-to-end agent maintains a slow
speed of around 5 m/s for most of the trajectory while still slowing
10
Fig. 24. Trajectories from full planning, trajectory tracking, end-to-end and classical
planners. The colours represent the speeds in m/s.

Fig. 25. Comparison of the speed profile on a section of the MCO track.

down in the corner. All the agents select more jerky speed profiles than
the classical planner.

We now consider the trajectories selected by the agents trained on
the MCO map and tested on the ESP map. Fig. 26 shows trajectories
of the agents trained on MCO and tested on ESP. The full planning
and end-to-end agents show the reason for them achieving fast lap
times being that they easily select high speeds, shown in dark red. The
trajectory tracking agent selects a more smooth speed profile, similar to
the classic planner. The trajectory tracking trajectory appears to come
closer to the boundaries, as does the classic planner, possibly suggesting
why the completion rate is lower. In contrast, the full planning and end-
to-end agents remain closer to the middle of the track. The end-to-end
agent trajectory appears jerky, with the vehicle slowing down around
the sharp corner (the dark blue) and quickly speeding up again.

The policy generality study shows that the full planning architecture
is the most robust to different maps, achieving nearly 100% completion
on all the maps tested. While the trajectory tracking agent achieves
the fastest lap times on the training map, it transfers poorly to other
maps, achieving low completion rates and poor lap times. The end-
to-end agent, which achieved the slowest lap times on the training
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Fig. 26. Trajectories from full planning, trajectory tracking, end-to-end and classical
planners tested on the ESP map.

map, outperformed the trajectory tracking agent on some of the test
maps. These results demonstrate that including LiDAR beams in the
state vector leads to improved generality. A qualitative investigation
into the trajectories showed that the trajectory tracking agent tracks the
classic planner well. The end-to-end agent selects jerky speed action,
often slightly slower than the other planners. The full planning agent
balances high performance and safety well, with fast trajectories that
remain near the middle of the track.

6. Sim-to-real transfer

Simulation-to-reality transfer is the process of deploying an agent
train in simulation on a physical robot. The sim-to-real gap is the
difference between the simulation and real-world environments and is
caused by a myriad of factors, including dynamics modelling differ-
ences, sensor noise, and delays on the physical hardware. Additionally,
the real-world tests are normally run in a different domain to the
training domain, i.e. in our context a different map. This gap makes
it difficult to deploy agents on physical robots, because the agents
perform differently, usually worse, to how they did in simulation.
As a result, few studies study the difference in performance between
simulated and real-world racing.

The agent’s sim-to-real transfer is investigated by using the agents
trained in simulation to control a physical F1Tenth vehicle. The results
are compared to the F1Tenth ROS2 simulator for direct comparison
using the same nodes and timing. The agents trained on the MCO map
are used. The same scaling quantities are used, and a speed cap that
clips speeds above 𝑣cap, is added for safety. Tests are performed using
a speed cap of 2 m/s, 3 m/s and 4 m/s. A straight corridor with a 90-
degree bend is used, as shown in Fig. 27. The starting point is a fixed
point with the vehicle’s back touching the wall, and the finish line is
once the vehicle has travelled 16.5 m in the 𝑥 direction. The area is
mapped using the ROS2 SLAM toolbox, the centre line is extracted and
smoothed, and the optimal trajectory is calculated.

The sim-to-real transfer is investigated in the two categories of the
steering angle selection and the speed selection. The steering angle
investigation uses a low-speed cap of 1.5 m/s and compares the steering
angles selected and resulting paths with their distances and curvatures.
The speed investigation considers the lap times to complete the track
at higher speeds of up to 5 m/s, the speed profiles and the trajectories
selected.
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Fig. 27. The paths taken by the different on the physical vehicle with a speed cap of
2 m/s.

6.1. Steering investigation

The full planning, trajectory tracking and end-to-end agents are
evaluated by transferring the agents trained in simulation on the MCO
map to the physical vehicle. The training uses the SAC algorithm and
the TAL reward signal. Using low speeds allows for the steering angles
and the resulting paths to be studied in detail. Fig. 27 shows the
different paths taken by the agents from the starting point in the bottom
left corner to the end of the track.

In Fig. 27, the classic agent selects a smooth path of driving around
the corner. The trajectory tracking agent swerves a low, regularly com-
ing close to the boundaries. The end-to-end agent selects the smoothest
path of the agents, with only a few small wiggles at the end. The
swerving is quantified by the distance travelled and the mean path
curvature.

Fig. 28 shows the distances and curvatures of the paths selected in
the simulation and on the physical vehicle. The dots show the results
from each of the five repetitions, the clear bars show the simulation
results and the hatched results show the results from the physical
vehicle. The full planning and trajectory tracking agents have longer
distances on the physical vehicle compared to the simulation, while
the end-to-end agent and classic planner have similar distances. The
longer distances are explained by the higher mean curvatures of the
full planning and trajectory tracking agents. Across both metrics the
classic planner performs the best and out of the learning agents, the
end-to-end agent has the most similar performance between simulation
and reality.

Fig. 29 shows the steering angles selected by the agents in sim-
ulation and reality. In both simulation and reality, the classic path
follower selects a smooth steering profile. In simulation, the end-to-
end agent slaloms the most, followed by the planning agent. The
trajectory tracking agent selects the smoothest steering angle profile
of the learning agents. In reality, the opposite is observed, with the
trajectory follower oscillating the most and end-to-end the least.

Fig. 30 shows the distribution of steering angles in simulation and
on the physical vehicle. In simulation, the trajectory tracking agent has
a majority of its actions having small steering angles. The full planning
and end-to-end agents have well-distributed steering angles. On the
physical vehicle, the trajectory tracking agent demonstrates a large
difference with many steering angles being near to the maximum. The
full planning and end-to-end agents also show a small increase in the
number of large steering angles.

The steering study shows that the end-to-end agent, which has the
worst quality paths in simulation, has the smallest sim-to-real gap. It
is proposed that the reason for this is that the LiDAR scans are used
directly as input to the agent, removing the effect of errors or delays
in the localisation. Considering that all the agents perform worse on
the real-vehicle indicates that there remains a difference between the
simulated vehicle dynamics and the real-world dynamics. Future work
could consider using a higher-order model in the simulator or using
domain randomisation to ensure that the policies learned are robust.
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Fig. 28. Distances and mean curvatures from simulated and real experiments.
Fig. 29. Steering angles selected by agents in simulation (top) compared to the real
vehicle (bottom).

Fig. 30. Distribution of steering angles in simulation and reality for the full planning,
trajectory tracking and end-to-end agents.

6.1.1. Delay investigation
Understanding simulation-to-reality transfer is difficult due to the

large number of possible differences in the simulator compared to a
physical vehicle. Options include delays in receiving perception up-
dates, sensor noise, dynamics model mismatch and delays in executing
control commands. To provide a further understanding of the differ-
ences, we present a study on the effect of delay on agent performance.
We investigate the effect of delay in localisation, which on physical
vehicles is a reality. In the real world, the LiDAR scanner runs at around
20 Hz and is then used by a particle filter that estimates the vehicle’s
position at around 10 Hz. We simulate this effect by giving the agent a
location update, delayed by a certain amount of time.

Fig. 31 shows the impact of localisation delay on the total distance
and mean curvature of the vehicles in simulation. In the tests, the
actions are also delayed by a fixed 100 ms for all tests to represent the
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Fig. 31. The effect of localisation delay on the total distance and mean curvature of
the vehicles.

Fig. 32. Lap times using increasing speed caps. Missing bars mean that the agent was
unable to complete the lap.

computation delay in executing steering commands. In the graphs, the
end-to-end agent achieves similar total distances and mean curvatures
for all the localisation delays used. This is expected since the end-to-end
agent does not use the vehicle’s localisation. The trajectory tracking
agent has a low mean curvature of 0.2 rad/m when no localisation
delay is present; this grows to 0.38 and then 0.55 when a 240 ms
delay is introduced. The missing line at the 320 ms delay indicates
that the trajectory tracking agent was no longer able to complete laps.
The full planning agent shows a small decrease in performance as the
delay increases but maintains a similar result across tests. The classic
planner is highly robust to localisation delays, consistently achieving
low distances and curvatures.

6.2. Maximum speed investigation

The impact of the speed cap is investigated by conducting tests with
increasing speed caps. The lap times, speed profiles and trajectories are
used to categorise the behaviour.

Fig. 32 shows that the end-to-end can complete laps faster at higher
speeds. All the agents can complete laps at 2 m/s. Using a cap of 3 m/s
or higher, the trajectory tracking agent is no longer able to complete
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Fig. 33. Speed profiles for the full planning, end-to-end and classic planners in simulation and reality.
Fig. 34. Fastest trajectories from the trajectory tracking, full planning and end-to-end
agents on the physical vehicle.

any laps due to crashing into the walls. The full planning agent can
complete laps up to 4 m/s. The end-to-end and classic agents can
complete laps using a speed cap of 5 m/s, indicating that they perform
the best at high-speed racing.

Fig. 33 shows the speeds selected by the agents using a speed cap of
4 m/s. On the physical vehicle, the full planning agent selects slower
speeds more regularly, possibly due to the increase in extreme steering
actions. The end-to-end agent displays a similar speed profile selection
in both simulation and reality with occasional spikes of low speeds.

Fig. 34 shows the fastest trajectories by the trajectory tracking, full
planning and end-to-end agents. The trajectory tracking agent’s extreme
swerving is a key problem limiting the agent’s performance. The full
planning agent swerves less, enabling success at 4 m/s. The end-to-end
agent can smoothly control the vehicle at high speeds, resulting in a
fast trajectory with a speed cap of 5 m/s. The end-to-end trajectory
demonstrates that the agent can select a feasible speed profile that
transfers to high-speed racing on a physical vehicle.

The sim-to-real investigation studied how the DRL agents trained in
simulation transferred to a physical vehicle. In the study on steering,
the end-to-end agent had the smallest difference between simulation
and reality in terms of the distance travelled and the mean curvature.
In contrast, the full planning and, specifically, the trajectory tracking
architectures transferred poorly, having high curvature and selecting
large steering angles. The study on delay indicated that a key reason for
this was that the end-to-end agent did not require localisation while the
other architectures did. The study on speed showed the impact of the
curvature trajectories was that trajectory tracking architecture could
only complete the track with a maximum speed of 2 m/s and the full
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planning agent with a maximum speed of 4 m/s. In contrast, the end-
to-end agent could complete the track with a maximum speed of 5 m/s,
achieving a similar result to the classic planner.

7. Conclusion

This paper compared the full planning, trajectory tracking and end-
to-end DRL architectures for autonomous racing. End-to-end agents use
the raw LiDAR scan and vehicle speed. Full planning agents use the
LiDAR scan, upcoming centre line points and the vehicle’s state vari-
ables. Trajectory tracking agents use upcoming trajectory points and
the vehicle’s state variables. The simulation results showed that the full
planning agent is the most robust to reward signal, training algorithm
and test maps. The end-to-end agent generally achieves slower lap
times, sometimes caused by not selecting high speeds. The trajectory
tracking agent can achieve the fastest lap times on the training map,
and tracks the optimal trajectory closely, but is brittle to changes in
reward signal and test map.

The policies were tested on a physical vehicle to evaluate the sim-
to-real transfer. The study on the steering actions and resulting paths
showed that the full planning and trajectory tracking agents swerved
excessively. The end-to-end agent had the most similar performance
between the simulation and physical vehicle, swerving less, travelling
a shorter distance and having a lower curvature. Further investigation
showed that the end-to-end agent selected less extreme steering actions
compared to the full planning and trajectory tracking agents. The study
on speed showed that the trajectory tracking agent could complete laps
with a maximum speed of 2 m/s, the full planning agent 4 m/s and the
end-to-end agent 5 m/s. The good performance of end-to-end agents
demonstrates their advantage of not relying on other systems, limiting
the difference between simulation and reality. However, even with end-
to-end architectures, simulation-to-reality transfer is still difficult and
requires further study.

Future work should further explore sim-to-real transfer for DRL
agents to physical vehicles and how all three architectures can be
transferred to physical vehicles. Domain randomisation and adapta-
tion (Carr, Chli, & Vogiatzis, 2018) could help train more robust
policies or a more complex model could be used in the simulator
to minimise the differences. The key limitation to be addressed is
the extreme swerving displayed by the trajectory tracking agent and
seen in other studies (Brunnbauer et al., 2022). Investigating the sen-
sor noise, latency, and compute requirements will provide explana-
tions, and domain randomisation and adaptation can possibly improve
performance.
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