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Abstract— This paper presents a data-driven framework to
discover underlying dynamics on a scaled F1TENTH vehicle
using the Koopman operator linear predictor. Traditionally, a
range of white, gray, or black-box models are used to develop
controllers for vehicle path tracking. However, these models are
constrained to either linearized operational domains, unable
to handle significant variability or lose explainability through
end-2-end operational settings. The Koopman Extended Dy-
namic Mode Decomposition (EDMD) linear predictor seeks
to utilize data-driven model learning whilst providing benefits
like explainability, model analysis and the ability to utilize
linear model-based control techniques. Consider a trajectory-
tracking problem for our scaled vehicle platform. We collect
pose measurements of our F1TENTH car undergoing standard
vehicle dynamics benchmark maneuvers with an OptiTrack
indoor localization system. Utilizing these uniformly spaced
temporal snapshots of the states and control inputs, a data-
driven Koopman EDMD model is identified. This model serves
as a linear predictor for state propagation, upon which an
MPC feedback law is designed to enable trajectory tracking.
The prediction and control capabilities of our framework are
highlighted through real-time deployment on our scaled vehicle.

I. INTRODUCTION

Path tracking is a crucial modality of any autonomous ve-
hicle and its performance can be severely affected by choices
and assumptions made in modeling and system identification.
Kinematic and geometric path-tracking controllers like Pure-
Pursuit [2] are popular choices for low-speed applications
owing to their low computational costs and ease of im-
plementation [3]. However, such geometric/kinematic con-
trollers cannot provide adequate path-tracking performance
as operational regimes have evolved to include high-speed,
non-planar, and rough terrain application spaces.

We will focus on an exemplary case of Ackermann steered
Wheeled Mobile Robot (WMR). The critical considerations
for modeling and controller design come from the standpoint
of chassis, dynamic load transfer, and, most importantly,
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Fig. 1: Proposed approach involving timeseries data col-
lection of benchmark maneuvers, discovery of dynamics
using EDMD, identification of linear predictor model using
Koopman operator, formulation of linear MPC [1], and
experimental validation.

wheel-terrain interaction. In this milieu, there is rich lit-
erature highlighting vehicle models and controller design
techniques at various levels of fidelity. While approximate
linear models allow us to construct optimal and robust
control solutions [4] suitable for real-time deployment, the
unmodeled dynamics still play a significant factor in perfor-
mance and safety. These unmodeled fluctuations may arise
from multiple sources ranging from inadequate modeling
of physics phenomena (e.g. wheel terrain interaction) to
variable kinematic and dynamics parameters. High-fidelity
non-linear models have sought to capture the dynamics and
wheel-terrain interactions effectively but pose a challenge for
controller design and added computational complexity for
the predictive controllers considering real-time deployment
[5]. Additionally, physics-based models do not scale down
to small-mid scale WMRs well enough due to factors like
tires, suspension and chassis not exhibiting similar mechan-
ical and material properties. This makes developing high-
fidelity models across varied robotic platforms even more
challenging.

Traditional system identification and adaptive control ap-
proaches have been built upon a range of white- gray- or
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black-box modeling techniques. However, newer approaches
like neural network-based implicit modeling of the dynam-
ics and end-to-end black box methods like deep imitation
learning and reinforcement learning [6] can implicitly cap-
ture the dynamics and control the system behavior. While
these methods provide for increased adaptability and have
been demonstrated in path tracking applications, they face
challenges like explainability, generalizability, and Sim2Real
gap.

Hence, data-driven modeling and system identification has
gained a lot of importance for merging benefits of leveraging
optimization techniques for model discovery while enabling
model analysis through their mathematical properties. In
this milieu, a prominent paradigm is the Koopman Operator
approach, where a finite-dimensional non-linear model can
be converted to an infinite-dimensional linear model through
the process of lifting. In the application domain, however,
we obtain a finite-dimensional linear predictor through the
provided data using the Extended Dynamic Mode Decom-
position (EDMD) [7] method as highlighted in Section II.
While these methodologies were traditionally applied for
discovery of dynamics in the fields of chaotic systems and
fluid flow analysis [8], studies like [9, 10, 11, 12, 13]
highlight the application of the Koopman operator theory
for optimal control and stabilization of robotic and dynamic
systems. The conventional method is to gather data based on
a kinematic/dynamic model-based simulation of the system,
obtain a linear model based on the training data, and deploy
it using a predictive/robust controller. In such scenarios, there
often exists a Sim2Real gap and dependency on the controller
and additional constraints to ensure stability. Additionally,
the specific trajectories the model has been trained on may
not effectively capture the excitation in dynamics.

In this study, we introduce a data-driven approach using
the Koopman EDMD algorithm to capture the underlying
dynamics of the F1TENTH scaled model vehicle [14]. We
conduct a series of maneuvers known for exciting vehicle
dynamics, providing insights into the platform’s character-
istics. To assess the performance of the derived model, we
employ a linear Model Predictive Control (MPC) feedback
law and compare it against the kinematic bicycle model
with Nonlinear Model Predictive Control (NMPC) in a path-
tracking problem.

II. PRELIMINARY

This section introduces the mathematical formulation
of the Koopman EDMD algorithm for non-linear systems
and an optimization sub-routine for obtaining an approxi-
mated linear model based on lifted temporal snapshots of
states/control measurements.

A. Koopman Operator Theory

Consider a non-linear system

xt+1 = f(xt,ut) (1)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm ; f : (X ,U) → X is
the evolution operator. To leverage this dynamical system for

linear prediction and controls, a higher dimensional lifting of
the system can be obtained using a set of functions called the
observable (g(x)). In this lifted space, the Koopman operator
K is a linear operator governing dynamics evolution.

[Kg](x) = g ◦ f(x, u) (2)

Theory of the Koopman operator and its spectral properties
for uncontrolled and controlled dynamics can be found
in [10, 8]. The Koopman operator is typically an infinite
dimensional operator, but it captures all the nonlinearities
of the underlying system in a linear fashion, which makes
it a powerful tool for the analysis of autonomous nonlinear
systems. While there are several tools and methods to obtain
an infinite dimensional Koopman operator, we will focus on
deriving a finite-dimensional linear predictor for time-series
data for our study.

B. Koopman EDMD for Finite-dimensional Linear Predictor

Finite dimensional approximation of the Koopman op-
erator has great practical significance as it helps us apply
powerful techniques from the linear systems theory to the
nonlinear systems. A well-constructed approximation of the
Koopman operator can significantly reduce the complexities
associated with the controls and synthesis and lend itself
to use of proven control techniques like Linear Quadrtic
Regulator (LQR) and Linear Model Predictive Controller
(MPC). The Koopman EDMD approach allows us to obtain
such finite dimensional approximation based on snapshots
or measurements of data and control inputs. The linear
approximation for a controlled system is given by:

Ψ(xt+1) = AΨ(xt) +But (3)

Where Ψ = [Ψ1(x), . . . ,ΨN (x)] ∈ RN is the functional
basis in the lifted space. A ∈ RN×N and B ∈ RN×M are the
finite dimensional approximations for the Koopman operator.
The following subsection highlights the procedure to obtain
these A and B matrices given temporal snapshots of state
and control inputs.

C. Numerical Optimization for Linear Predictor

Consider the matrices Xt = [x0, . . . ,xt−1] ∈ Rn×t and
Xt+1 = [x1, . . . ,xt] ∈ Rn×t with columns as the snapshots
of the measured state x at times [0, . . . , t− 1] and [1, . . . , t]
respectively, where t ∈ Z+. The Xt+1 matrix is one time-
step forward progression of the Xt matrix. Similarly, denote
the controls matrix by U = [u0, · · · ,ut−1] ∈ Rm×t, where
each column denotes the respective control input at time
[0, . . . , t].
Let zt = Ψ(Xt) and zt+1 = Ψ(Xt+1) denote the lifted
states where zt, zt+1 ∈ RN×t where N >> n. From Eq.
(3), we have:

zt+1 = Azt +But (4)

The unknown matrices A, B and C can be estimated
numerically using the measured data as follows [10].
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1) The matrices A and B are computed by solving the
convex optimization problem

argmin
A,B

∥∥∥∥zt+1 − [A B]

[
zt
U

]∥∥∥∥2
F

+λ1 ∥A∥1 +λ2 ∥B∥1
(5)

where λ1 and λ2 are the regularization hyperparameter
for imposing L1 penalty on A and B matrices for
promoting sparsity (LASSO regression).

2) Then, the matrix C, representing the linear mapping
from the lifted space to the original state space, is
obtained as the projection of Ψ(x) onto x with least-
squares optimization of the following form.

argmin
C

∥X−Czt∥2F (6)

III. MOTIVATION AND PROBLEM STATEMENT

This study presents an experimental framework for data-
driven model identification and subsequent controls for
trajectory tracking of a WMR. Traditionally, data driven
discovery relies on simulation data which may not be truly
representative of the underlying dynamics or real-world data,
which in the case of a full-scale autonomous vehicle is
prohibitively expensive.

Our proposed framework is implemented on the
F1TENTH system, a scaled robotics platform widely used as
a surrogate model of a full-scale autonomous vehicle [14].
This platform is equipped with an Ackermann-steered drive
and NVIDIA ARM-based compute, designed for the devel-
opment of autonomous driving capabilities. The F1TENTH
scaled vehicle system, shown in Fig. 2a, utilizes a radio-
controlled hobby car chassis capable of performing highly
dynamic maneuvers for its scale. To capture the underlying
dynamics, the data must record the dynamic excitation of the
system. The following maneuvers, recognized benchmarks in
the vehicle dynamics community, are employed to excite the
dynamics and comprehend the system’s characteristics.

• Skidpad: The skidpad is seemingly the simplest ma-
neuver to follow, with a constant longitudinal velocity
and steering angle. Still, it showcases the underlying dy-
namic behavior of the vehicle through the effect of lat-
eral acceleration and body roll causing under/oversteer.

• Fishhook: The fishhook maneuver is used to test out
the roll stability of the vehicle. It indicates the vehicle
response to gradual changes in steering.

• Slalom: The slalom run (or the double lane change)
tests the lateral stability of the vehicle and roll dynam-
ics.

• Teleop: The teleop runs randomly excite the dynamics
with unordered command inputs. This dataset is solely
used for testing to validate the generalizability of the
model and performance of the MPC.

Furthermore, OptiTrack motion capture (mo-cap) system
consisting of 12 camera array with 0.2 mm measurement
accuracy was exploited to stream and record the vehicle state
data along with the vehicle control input data over a mutual
ROS [15] interface between the vehicle’s on-board computer

and the OptiTrack computer in an indoor lab setting (refer
Fig. 2b). Datasets were collected by throttling the topics
for vehicle states and inputs at 60 Hz frequency to ensure
synchronized recording of state-input pairs (refer Table I).

In this paper, we propose a framework to leverage the
Koopman EDMD algorithm over this temporal data (snap-
shots) and identify a linear approximation of the Koopman
operator. Furthermore, a feedback control law is imple-
mented using the linear MPC for optimal path tracking.

IV. METHODOLOGY

This section highlights process flow for our data-driven
model identification and control pipeline. An overview of
this framework is highlighted in Fig. 1.

A. Data Collection
Intuitively, the first step for data-driven discovery of dy-

namics is collection of relevant experimental data indicative
of the underlying vehicle dynamics. Consider the F1TENTH
vehicle performing vehicle dynamics maneuvers inside the
OptiTrack arena. The measured vehicle states include Carte-
sian coordinates for position x, y (in meters) and the vehicle’s
heading angle θ (in radians) with respect to static world
frame. The control inputs applied to the vehicle on the other
hand included linear velocity v (in meters per second) and
steering angle δ (in radians), which is a common practice
followed across various vehicle dynamics experiments for
Ackermann-steered vehicles.

The variations in trajectory profiles of the vehicle were
achieved using two techniques:

• Nature of the maneuver: Skidpad test drives the vehi-
cle in a constant-radius circular trajectory by applying
constant velocity and steering control inputs. Fishhook
test drives the vehicle in a spiral trajectory, which can be
achieved in one of the following ways: (i) keeping linear
velocity constant and gradually increasing/decreasing
the steering angle, or (ii) keeping constant steering angle
and gradually decreasing/increasing the linear velocity;
we used the former approach. Slalom test drives the
vehicle in a sinusoidal trajectory by applying constant
velocity and square-wave shaped steering control inputs.

• Magnitude of control inputs: Each of the maneuvers
described earlier are characterized by the magnitude of
control inputs being applied. The velocity and steering
commands were therefore discretely varied in each case,
as described in Table I.

B. Data Driven Model Discovery
1) Data Preprocessing: The training data from Section

IV-A consists of 4 state and 2 input measurements.
We have used randomly sampled trajectories from
the skidpad, fishhook, slalom and maneuvers to
train the model. Considering a total of t samples,
the training data matrix can be represented as
Xt = [x0, . . . ,xt−1] ∈ R4×t, Xt+1 = [x1, . . . ,xt] ∈ R4×t

and Ut = [u0, . . . ,ut−1] ∈ R2×t as highlighted in Section
II-C.
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(a) F1TENTH vehicle with 4 X-base passive reflective markers. (b) F1TENTH vehicle performing slalom maneuver in mo-cap area.

Fig. 2: Experimental setup used for collection of time-synchronized state-input pairs of the physical F1TENTH vehicle using
three distinct open-loop controllers and deployment of linear MPC on the vehicle using the Koopman operator based lifted
model. The standard frame axes convention {X = red, Y = green, Z = blue} applies.

TABLE I: Parameter variation for collection of time-synchronized state-input pairs under a variety of trajectory profiles.

Maneuver Velocity
(m/s)

Steering Angle
(rad)

Sampling Frequency
(Hz)

Sync Tolerance
(s)

Data Samples
(#)

Skidpad {0.5, 1.0, 1.5, 2.0, 2.5} {0.312, 0.416, 0.520} 60 5e-5 5830
Slalom {0.5, 1.0, 1.5, 2.0, 2.5} {0.312, 0.416, 0.520} 60 1e-4 3033

Fishhook {0.5, 1.0, 1.5, 2.0, 2.5} {0.104, 0.208, 0.312, 0.416, 0.520} 60 4e-5 2412

2) Candidate Basis Function: The lifted dynamics, as
shown in Eq. (3), are obtained through analytical construc-
tion of the basis function Ψ using the Dubins car model
formulation. The seminal work on the Dubin’s car model
[16] and its extensions incorporating controls, as presented
by Lamiraux et.al [17], offer a formulation for smooth paths
between two points for a car-like robot. The robot model,
utilizing the Dubin’s car model with control input, can be
expressed as:

ẋ =


ẋ
ẏ
v̇

θ̇

 =


v cos θ
v sin θ
a
ω

 (7)

Considering Eq. (7) and our observed state measurements
xt, a 17 function candidate library is selected consisting
product of sin θ and cos θ with the velocity v estimated at
each data point based on x and y coordinates. The additional
lifted functions are of the form vn cos θ, vn sin θ for
n = 1, · · · , 3. We define zt := Ψ(xt) as the state vector in
the lifted space of aforementioned library functions, i.e., zt =(
1 x y v v cos θ v sin θ . . . v3 cos θ v3 sin θ

)⊤
.

3) Linear Approximation using Koopman EDMD: The
lifted state measurements (zt, zt+1) and control inputs (ut)
are plugged into Eq. (5) and a convex optimization sub-
routine yields the A and B matrix. These are the finite
dimension Koopman approximation for propagation of lifted
state dynamics. This EDMD model is further used for
prediction and design of MPC based control law.

C. Linear MPC for Trajectory Tracking

Our objective is to attain a control law enabling accurate
trajectory tracking using a Quadratic Programming solver for
fast evaluation of control inputs. Considering our Koopman
lifted predictor as our discrete dynamical system:

zt+1 = Azt +But

xt+1 = Czt+1

(8)

Where original coordinate space of the dynamics as de-
scribed in Eq. (7), the lifted space in zt manifests the spatial
transformation defined by the lifting function Ψ(xt). The
proposed controller solves a closed-loop quadratic optimiza-
tion at each time given by:

min
ut,zt

t=Np∑
t=1

(
Czt − Czreft

)⊤
Q
(
Czt − Czreft

)
+

(
ut − ut−1

∆t

)⊤

P

(
ut − ut−1

∆t

)
(9a)

subject to

umin ≤ ut ≤ umax ∀t (9b)

Cz0 = [x0, y0, v0, ψ0]
⊤ (9c)

The objective function is designed to penalize the posi-
tion error relative to the trajectory window, represented as
([Czref − Czpred]), with (Czpred) denoting the predicted
position of the robot. Moreover, to mitigate rapid changes in
control inputs that may cause instability, the rate of change of
the control input u(t) is also penalized, considering actuator
inertia. The MPC hyperparameters can be found in [18].
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(a) Skidpad maneuver. (b) Fishhook maneuver.

(c) Slalom maneuver. (d) Teleoperation maneuver.

Fig. 3: Experimental validation for a variety of trajectory profiles: (a) skidpad, (b) fishhook, (c) slalom, and (d) teleoperation.

V. RESULTS AND DISCUSSION

This section presents a comprehensive path-tracking com-
parison between two models: a benchmark kinematic bicycle
model with a non-linear model predictive controller (NMPC)
and the derived Koopman linear model with the designed
linear model predictive controller (MPC). The evaluation
is performed using a test data set comprising randomly
sampled trajectories from skidpad, fishhook, slalom and
teleoperation maneuvers. Notably, these trajectories were not
previously utilized during the training process, making this
evaluation crucial for assessing the generalizability of our
linear predictor and the efficacy of the MPC feedback law in
achieving accurate tracking. The path-tracking performance
of both controllers is illustrated in Fig. 3, depicting their
responses along the mentioned trajectories. Table II presents
a comprehensive summary of the tracking errors. The re-

search findings reveal that during the Skidpad and Fishhook
maneuvers, there is limited excitation in the roll and yaw
plane dynamics, leading to steady-state conditions, especially
at slower speeds. Consequently, both approaches achieve
similar tracking performance, as the vehicle’s motion can be
effectively captured using the kinematic model. However, in
the case of the Slalom maneuver, the continuous excitation
of system dynamics reveals limitations in tracking perfor-
mance when relying on the kinematic model with NMPC
feedback controller. In contrast, the Koopman EDMD model
combined with linear MPC demonstrates markedly superior
performance, indicating its enhanced capability to accurately
capture the underlying dynamics more effectively. This phe-
nomenon is further observed during the teleop maneuver,
which serves as a crucial test to assess the generalizability
of our proposed approach. The presence of random dynamic
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excitation in this scenario can potentially lead to specific
instabilities in the system behavior, highlighting the impor-
tance of evaluating the robustness and adaptability of our
method under diverse and unpredictable conditions. These
results underscore the potential advantages of utilizing the
Koopman EDMD model and linear MPC for enhanced path-
tracking control in challenging maneuvers.

TABLE II: Comparison of tracking performance for various
test maneuvers.

Maneuver Control x-MSE
(m)

y-MSE
(m)

θ-MSE
(rad)

Skidpad Koopman + MPC 0.019 0.007 0.09
Kinematic model + NMPC 0.0036 0.0035 0.008

Slalom Koopman + MPC 2.4e-6 7.5e-5 3.3e-4
Kinematic model + NMPC 2.5e-3 7.0e-4 5.7e-3

Fishhook Koopman + MPC 0.046 0.01 0.11
Kinematic model + NMPC 0.019 0.014 0.006

Teleop Koopman + MPC 0.15 0.26 1.14
Kinematic model + NMPC 0.166 0.38 7.97e-5

VI. CONCLUSION

The primary contribution of our study is the data-driven
framework for the discovery of underlying vehicle dynamics
in form of a linear predictor model. As the scaled vehicle
undergoes maneuvers like skidpad, fishhook, and slalom,
the excitation of dynamics is captured under an indoor
localization system with temporal snapshots of state and
action sequences. Based on these snapshots, a linear model
of the system is identified using the Koopman EDMD ap-
proximation. The realized linear model can now leverage the
widely accepted linear controller design methodologies like
MPC while being computationally efficient for edge-device
deployment. The performance of the model and controller
design is highlighted using the tracking capabilities across
testing data.
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