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Abstract—Autonomous racing is a research field gaining large
popularity, as it pushes autonomous driving algorithms to their
limits and serves as a catalyst for general autonomous driving.
For scaled autonomous racing platforms, the computational
constraint and complexity often limit the use of Model Predictive
Control (MPC). As a consequence, geometric controllers are
the most frequently deployed controllers. They prove to be
performant while yielding implementation and operational
simplicity. Yet, they inherently lack the incorporation of model
dynamics, thus limiting the race car to a velocity domain where
tire slip can be neglected. This paper presents Model- and
Acceleration-based Pursuit (MAP) a high-performance model-
based trajectory tracking controller that preserves the simplicity
of geometric approaches while leveraging tire dynamics. The
proposed algorithm allows accurate tracking of a trajectory at
unprecedented velocities compared to State-of-the-Art (SotA)
geometric controllers. The MAP controller is experimentally
validated and outperforms the reference geometric controller
four-fold in terms of lateral tracking error, yielding a tracking
error of 0.055m at tested speeds up to 11m/s on a scaled
racecar. Code: https://github.com/ETH-PBL/MAP-Controller.

I. INTRODUCTION

Motorsport racing has proven to enable knowledge transfer
of cutting-edge research to the automotive industry [1, 2, 3].
In particular, autonomous racing presents a new frontier that
promises to revolutionize autonomous driving by enabling
and stress-testing new technologies and algorithms in the
field of Self Driving Cars (SDC) [4, 5, 6, 7]. For this reason,
many autonomous racing competitions have recently emerged,
featuring different platforms and form factors, from full-
scaled Indy Autonomous [6] and Formula Student Driverless
[8] to scaled F1TENTH [5, 9]. A major challenge in these
competitions is the completion of a racetrack in a high-
speed setting [3, 5, 6, 8], which presents a demanding
task for autonomous control systems, as the car’s behavior
is highly non-linear [10, 11, 12, 13]. This is particularly
challenging when the controller needs to operate at the edge
of traction, beyond the linear characteristics of the complex
tire dynamics [10, 11, 12, 13]. Therefore, tracking trajectories
accurately at cornering speeds that saturate the tire friction
capacity, presents a challenging and central controls task for
autonomous racing [3, 6, 8].

Classically, the control strategies in the autonomous racing
setting could be loosely categorized into the following three
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methods, listed in the order of increasing complexity and
performance:

I Reactive Methods: Compute control actions directly
based on the sensor input they receive [14, 15]. This
allows for simple and reactive control, without requiring
proper state estimation. However, disregarding informa-
tion about the track and the car, limits the performance
of the controllers, especially in high-speed settings.

II Geometric Methods: Utilize the geometric properties
of the vehicle, typically derived from the kinematic
single-track model [16]. Methods such as Pure Pursuit
[17] or Stanley Control [18] separate longitudinal and
lateral control. While these methods yield a great racing
performance advantage over their reactive counterparts,
they do not take into account the dynamic model of the
vehicle, thus leading to sub-optimality.

III Model-Based Controllers: A typical example of a model-
based controller is the family of MPC methods. They
consist of applying optimal control over a receding
horizon and can take into account the dynamic model
of the vehicle as well as state and input constraints thus
yielding highly performant autonomous racing results
[8, 10, 11]. However, precise state-estimation and knowl-
edge of the car model and delays present in the system are
essential to achieve good MPC performance, making this
method the most computationally demanding and difficult
to implement control strategy of the aforementioned
methods [19].

The development of autonomous race cars brings about
many often unforeseen challenges. Especially at small scale,
energy and size constraints necessitate the deployment on
embedded processors [20, 21] with limited computational
resources. Constraints on sensors make state-estimation more
difficult compared to full-scale cars and often introduce
delays. Yet, for high-speed applications low latency and real-
time throughput need to be guaranteed [11]. Many refrain
from deploying MPC due to the added implementational
and computational complexity given these constraints and
prefer simpler alternatives [3, 17]. In order to maintain the
performance advantage of model-based control, we propose a
way of incorporating model knowledge into the simple control
architecture of geometric controllers.

This paper introduces MAP, a high accuracy and low
complexity model-based lateral controller to track an arbitrary
raceline trajectory in a high-speed autonomous racing scenario.
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The controller has been evaluated on the 1:10 scaled
F1TENTH autonomous racing resource-constrained platform
[5, 9]. Yet, it is to be mentioned, that the control strategy can
be applied to full-scaled vehicles as well.

The proposed MAP controller incorporates the highly non-
linear Pacejka tire model [13] into lateral geometric control,
inspired by aerospace fixed-wing L1 guidance [22]. This re-
sults in a more accurate control strategy that would need to be
newly classified between geometric and model-based methods,
as it leverages the accuracy of model-based lateral controls
with the simplicity of a geometric controller. Furthermore,
the proposed controller is computationally efficient enabling
real-time operation on the computationally constrained On
Board Computer (OBC) platform. The controller has been
experimentally evaluated on the F1TENTH testing platform
while racing at a tested top speed of 11m/s. The main
contribution of the paper is the design and evaluation of the
proposed MAP controller which offers the following benefits:

• High-Performance: The model-based lateral controller
results in a four-fold higher tracking accuracy at high
velocity compared to geometric controllers such as Pure
Pursuit. Namely, 0.055m lateral error at speeds up to
11m/s. By incorporating the tire dynamics, the controller
is able to compute the steering angle necessary to track
the desired trajectory with great accuracy.

• Low Complexity: As the controller still separates
longitudinal and lateral control, it is simple to implement,
comparable to a geometric controller, yet has the benefit
of high accuracy by including model-based properties.
Thus, it is significantly less complex to implement and
optimize than a full-fledged MPC.

• Computational Efficiency: The computation of a single
control cycle amounts to 6ms 1. Therefore the low
latency of the controller allows for real-time operation
in a high-speed setting, on computationally constrained
hardware.

II. RELATED WORK

The current SotA high-performance racing controllers, on
full-scaled vehicles, are based on optimal control methods
such as MPC [8, 23, 24]. MPC can offer the ability to
optimally plan and track a racing trajectory, even incorporating
system and safety constraints, yet at the expense of complexity
and computation, [25, 26] of formulating and solving the
Quadratic Programming (QP) problem.

However, for the reason of complexity and computational
burden, MPC has rarely been used in scaled and compu-
tationally constrained autonomous racing competitions [3]
such as F1TENTH or drone racing [27], where the robotic
vehicles need to work with limited processing power. High-
performance racing requires upper latency bounds of a
few tens of milliseconds [11], therefore onboard processing
on low-power embedded computing platforms calls for a
computationally lightweight controller [25, 26].

To overcome the computational limits, the most utilized
high-performance controller in scaled autonomous racing is of

1On a single embedded ARMv8 core of the NVIDIA Jetson NX CPU

the geometric type, most commonly a Pure Pursuit controller
[17]. The Pure Pursuit controller is a lateral controller, that
pursues a point on the raceline that lies in front of the
vehicle, the distance towards said point is defined as the
lookahead distance Ld, from which one can compute the
necessary steering angle based on the Ackermann steering
model [28]. As Ld is its only tune-able parameter, setting
the Ld correctly is crucial for high-performance racing. In
the traditional Pure Pursuit method [17], the Ld is a chosen
constant. This inherently presents a trade-off; a too-short Ld

produces oscillations at high velocities; too high Ld results
in inaccurate tracking and the cutting of corners.

While the Pure Pursuit controller plays an important role
in the domain of SDC and autonomous racing, the downsides
of this control strategy become apparent once the controller is
pushed to the physical edge of traction [10, 11]. Under high
lateral acceleration the car’s driving behavior becomes highly
non-linear, which pure geometric controllers fail to capture,
resulting in tracking errors [10, 11]. Previous works proposed
methods of dynamically changing the lookahead distance Ld

of Pure Pursuit, to mitigate this effect [29, 30, 31]. Others
introduced fuzzy logic based on the lateral deviation and
track curvature [32, 33, 34], they however did not address
the underlying issue of disregarding tire slippage.

Similar to Pure Pursuit, a lateral guidance law can be
found in the aerospace domain for fixed-wing Unmanned
Aerial Vehicles (UAV)s, namely the L1 guidance [22]. This
nonlinear guidance logic is designed for curved trajectory
tracking of a fixed-wing UAV, by choosing a reference point
on the trajectory in front of the aircraft, namely the L1

distance. Therefore, the similarities to Pure Pursuit with its
lookahead distance Ld, can be seen. However, Pure Pursuit
commands a steering angle, whereas as the L1 guidance
outputs a lateral acceleration alat governed by Eq. (1), where
V is the velocity and η is the angle between the velocity
vector and the reference point.

alat = 2
V 2

L1
sin(η) (1)

This paper proposes and demonstrates how to leverage the
acceleration-based guidance signal alat to incorporate model
knowledge in a geometric control setting while applying
well-known adaptive Ld techniques. The Pacejka Magic
Tire Formula [13] allows the computation of the required
alat to map to the steering angle. The incorporation of the
dynamic model allows the controller to consider tire slip while
inherently scaling with the velocity, allowing for accurate
lateral control in the high-speed and non-linear domain. This
yields a high-performance racing controller that outperforms
SotA geometric racing controllers in terms of lap time and
four times in tracking error. The controller has been fully
designed, implemented, and evaluated in a scaled F1TENTH
car [35].

III. METHODOLOGY
In this section, we show through abstraction that Pure

Pursuit uses the same L1 guidance law that was proposed for
UAVs [22]. With this, we show that Pure Pursuit disregards



wheel slip, an assumption that fails at high speeds. We propose
a method able to better capture and control the real-world
dynamics of the car. This is done by identifying the car
dynamics in Section III-B and using them to convert guidance
to control commands via a Lookup Table (LUT) described in
Section III-C. Finally, in Section III-D a mathematical reason
for changing the lookahead distance is given.

A. Proposed Control System Overview
The L1 guidance of [22] results in a desired centripetal

acceleration ac of the vehicle, equal to the tangential speed
vt multiplied with the yaw rate Ψ̇:

ac = vt · Ψ̇ = 2
v2t
Ld

sin(η) (2)

Where Ld is the lookahead distance and η is the angle between
the velocity vector and lookahead point.

Pure Pursuit can be derived from this equation, by map-
ping the lateral acceleration to a steering angle under the
assumption of Ackermann steering. This assumes that no side
slip occurs and the longitudinal velocity in the car’s frame
vx = vt:

δ = tan−1

(
ac · lwb

v2x

)
(3)

where lwb is the length of the wheelbase. Inserting the desired
acceleration from Eq. (2) yields the formula used in Pure
Pursuit:

δ = tan−1

(
2sin(η)lwb

Ld

)
(4)

When driving corners at higher speeds, tire slip starts to occur
and the underlying assumption of Ackermann steering from
Pure Pursuit no longer holds. The desired acceleration ac
is no longer correctly commanded and the car starts to drift
away from the trajectory. Therefore, we propose a method of
incorporating the tire slip into the conversion from centripetal
acceleration to the steering angle. This is done, by formulating
the single-track model [16] in terms of the lateral forces acting
on the tire, which yields the following equations of motion
for the lateral velocity vy and the yaw-rate Ψ̇, with forces
and angles defined in Fig. 1.

v̇y =
1

m
[Fy,r + Fy,f ]− vx · Ψ̇ (5)

Ψ̈ =
1

Iz
[−lrFy,r + lfFy,f ] (6)

Where m is the mass of the vehicle and Iz is the moment
of inertia around the yaw axis. The lateral forces produced
by the front (index f ) and rear axle (index r) can be related
to the tire slip angles α with the general formula (i ∈ (f, r)):

Fy,i = µFz,i · fi(αi) (7)

where µ is a friction coefficient and Fz,i the vertical load on
axle i. The respective tire slip angles α are found through
the relation:

αf = arctan
vy + Ψ̇lf

vx
− δ (8)

αr = arctan
vy − Ψ̇lr

vx
(9)

Figure 1: Overview of the single-track model [28] with the
relevant forces and angles defined in their positive directions.

And the load on the front and rear axle are found depending on
the longitudinal acceleration along and the mass distribution
of the car, depending on the height of the Center of Gravity
(CG) above the ground hcg:

Fz,f =
mglr −malonghcg

lr + lf
(10)

Fz,r =
mglf +malonghcg

lr + lf
(11)

The steering angle δ enters these equations only by affecting
the front tire slip angle αf . Hence, it is necessary to find
a model for the lateral force before being able to map the
desired acceleration to a steering angle.

B. Tire Model

The Pacejka Magic Formula model [13] is able to accurately
capture tire slip and model the transition of static to dynamic
friction. In the original formulation, the authors included shift
factors that are omitted in our version for simplicity. The
model relates the tire slip angle at axle i to the respective
lateral force Fy,i via the non-linear relationship:

Fy,i = µFz,i ·Di sin[Ci·
arctan (Biαi − Ei (Biαi − arctan(Biαi)))]

(12)

The authors described the parameters as follows:
• B : Stiffness Factor
• C : Shape Factor
• D̃ : Peak Value
• E : Curvature Factor

Where in Eq. (12) the peak value D̃ is in fact µFz,i ·Di. A
data-driven method was employed to identify these parameters.
The data was gathered in steady-state cornering experiments
as proposed by Voser et. al. [36], in which the car was driven
at a constant speed and the steering angle was increased
slowly (0.02 rad/s). This made it possible to relate the lateral
forces at the front and rear tires to the measured steady-state
acceleration by the Inertial Measurement Unit (IMU) ay,imu

via the relationship

Fy,f =
m · lr

(lr + lf ) · cos δ
· ay,imu (13)

Fy,r =
m · lf
lr + lf

· ay,imu (14)



Figure 2: Data points obtained from the steady-state cornering
experiment and the resulting model fit of the Pacejka model.
Outliers are marked red, inliers green, and the model predic-
tion is shown in blue for a fixed load of 16.4 N on the front
axle and 18.6 N on the rear axle.

The parameters were then found through a least squares
regression, in which the shape factor C was limited to 1.5
and the curvature factor E was limited to 1.1 to prevent
the function to curve back towards zero for high tire slip
angles. With this, the data fit in Fig. 2 was obtained. Outliers
were rejected by performing three steps k of Expectation
Maximization (EM) in which only points with an error smaller
than 10

2k
were kept. This resulted in 25.5 % of points being

rejected as outliers and a resulting fit with an average residual
of 0.87 N for the front and 1.35 N for the rear tires.

C. Lookup Table Generation

For a set of fixed steering angles at a certain speed vx,
the dynamics of vy and Ψ̇ in Eq. (6) and Eq. (5) converge
to a steady-state, where the car turns at a constant radius
and with constant centripetal acceleration. Since the guidance
law results in smooth changes of commanded centripetal
acceleration, the car deviates slightly from this steady-state
condition. Therefore, the proposed method is able to neglect
the transient phase, commanding steering angles resulting in
the desired steady-state centripetal acceleration. The feedback
loop and intrinsic stability of the guidance law [22] mitigate
the inaccuracies during the transient phase. Since Eq. (5)
cannot be solved analytically for the steady-state centripetal
acceleration, a LUT was generated to obtain a mapping
from steering angle to acceleration. For this, the system was
simulated using the single-track dynamic model. The state was
propagated with a range of constant longitudinal velocities and
steering angles for which the resulting steady-state centripetal
acceleration was recorded. With this, the controller is able
to retrieve the required steering angle for a certain velocity
and desired acceleration by interpolating between the closest
elements in the table.

As can be seen in the visualization in Fig. 3, there is a lack
of solutions for high δ and vx. In this region, the simulated

Figure 3: Visualization of the lookup table generated from the
identified car model. The steady-state centripetal acceleration
is shown as a function of the steering angle and velocity.

model did not converge to a steady state acceleration but
rather an unstable drift, resulting in an upper bound for the
achievable lateral acceleration at a given speed vx.

From an implementation point of view, first, the lateral
acceleration alat for the desired Ld is computed; secondly, the
LUT returns the steering angle based on the model dynamics;
from here on the MAP can be treated in the same way as a
regular Pure Pursuit controller.

D. Adaptive Lookahead Point

Park et al. showed that the evolution of the lateral distance
to the trajectory as a result of the guidance law in Eq. (2)
could be approximated by a second order system with a time
constant τ = Ld/vx and natural frequency ωn =

√
2vx/Ld

[22]. Therefore, to converge to the trajectory as quickly as
possible, Ld should be chosen as small as possible. On the
other hand, the natural frequency increases with the velocity.
For stability, the natural frequency of the controller must be
smaller than half the frequency of the entire vehicle dynamics
including delays. Tests showed that for higher speeds this
criterion was no longer met and the system became unstable.
To address this, Ld was scaled with the velocity with the
affine mapping Ld = m + qvctrl, where vctrl is the speed
commanded to the car, and m, q are tunable coefficients.
Relating the lookahead distance with speed made the natural
frequency of the guidance logic independent of the velocity
and ensured stability at higher speeds.

IV. EXPERIMENTAL RESULTS

This section presents the lap time and tracking benefits of
incorporating the tire dynamics in a high-speed racing setting,
as we compare the proposed MAP controller with a purely
geometric Pure Pursuit controller. Both Pure Pursuit and the
MAP controller were set up and tuned at equal conditions
such that a fair comparison based on lap time and lap-wise
Root Mean Square (RMS) lateral error to the global trajectory
can be conducted using an F1TENTH compliant car.



A. Experimental Setup

The experiments were conducted on an F1TENTH racecar
based on [35], using the Robot Operating System (ROS). The
scaled RC car chassis Traxxas Slash 1:10 4WD RTR was
equipped with a Hokuyo UST-10LX LiDAR. Pure Pursuit
and the MAP controller were tuned to minimize the lap-
wise RMS lateral error on a reference track while tracking the
same global trajectory. The global trajectory was planned with
the global trajectory optimizer from [37], which generates a
minimum curvature path and calculates a velocity profile with
a forward-backward solver. As the velocity profile is computed
for perfect tracking, the velocity was scaled down linearly
to 60% for tuning, where 100% represents 8.5m/s which
is a high-speed for scaled tracks and is further highly track-
dependent. The tuning regarded the lookahead distance Ld by
varying the aforementioned coefficients m, q in Section III-D
such that the respective controllers minimized the RMS lateral
error to the reference trajectory at a 60% speed scaling.
Allowing both controllers to be tuned individually to their
optimal working point.

B. Velocity Scaling of Performance

To test the performance of both MAP and Pure Pursuit
at speeds higher than that of tuning, the controllers were
tested at different speeds, starting with a velocity scale of
60% and increasing it in steps of 2.5% until the controller
was no longer capable of maintaining sufficiently accurate
tracking, resulting in a crash. For each velocity and controller,
10 rounds were driven with the car. The track used was
the same as the one used for tuning. As can be seen in
Fig. 4, lateral error for the MAP controller is significantly
lower than that of Pure Pursuit at all speeds. Specifically,
at 82.5% speed, the tracking performance is nearly twice as
good for the MAP with respect to the Pure Pursuit controller.
In practice, this resulted in Pure Pursuit being at the edge
of collision with the track boundaries, while MAP was still
tracking the trajectory reasonably well. Regarding lap times,
it can be seen that having more accurate trajectory tracking
allows for planning more aggressive trajectories ultimately
yielding better performance. The MAP controller achieves
better lap times at every tested speed, achieving an average
improvement of 0.227 s. The biggest improvement is seen at
the highest speed, where MAP finishes the lap 0.350 s faster
than the Pure Pursuit controller, corresponding to a 5% time
improvement. However, the lower tracking error of the MAP
permits tracking even faster trajectories, enabling even higher
lap time improvements.

C. Effect of Tire Dynamics

To assess the effect of using different tire models, nominal
MAP and Pure Pursuit are deployed alongside MAP using
a linear tire model, whose coefficients, that linearly relate
force to tire slip angle, are found by using regression on the
same data as in Fig. 2. Tests are conducted at two different
reference speed scales, 70% and 80% over five consecutive
laps. The resulting lap times are slightly different from the
previous paragraph as the track needed to be slightly changed
for logistical reasons. In Fig. 6 one can see the different

Figure 4: Lap-wise RMS lateral errors of Pure Pursuit and
MAP with increasing velocity on the reference track. The
box represents the lower and upper quartile; the whiskers
represent the minimum and maximum measured values; the
horizontal line represents the median value. It can be seen
that Pure Pursuit displays consistently a higher (worse) lateral
error with increasing velocity.

Figure 5: Lap-wise lap times of Pure Pursuit and MAP with
increasing velocity on the reference track. The box represents
the lower and upper quartile; the whiskers represent the
minimum and maximum measured values; the horizontal line
represents the median value. It can be seen that Pure Pursuit
consistently displays higher (worse) lap times than the MAP.

trajectories driven by the two algorithms. The left plots show
the results for the slower velocity: at this speed, the controller
with the linear tire model is seen cutting the corners. The data
in Table I shows that this results in a 2.3 % faster lap time at
the cost of a 54.2 % larger lateral tracking error compared to
nominal MAP with the Pacejka tire model. Pure Pursuit drives
wide in all corners. Hence, the nominal MAP outperforms
Pure Pursuit with 58.2 % lower average deviation, 45.5 %
lower maximum deviation, and 5.1 % faster lap time at this



Figure 6: Trajectories of the Pure Pursuit controller and the MAP controller with both linear and Pacejka tire model. The
reference line is shown dashed in gray and an arrow indicates the direction of racing. On the left, the reference speed is
scaled to 70% of the nominal one, and to the right to 80%. The tracking benefit of accurate tire dynamics can be seen by
noticing that in the right plot, at higher speeds, both Pure Pursuit and the MAP with linear tire model crash into the track
boundaries (driven paths end abruptly at the edge). The MAP controller with the Pacejka tire model, instead, manages to
successfully track the given trajectory over five laps.

speed.
At higher speeds, the benefit of using a more accurate tire

model in the controller becomes even more apparent, as the
Pacejka version of MAP is the only one able to complete
five laps, achieving robust tracking of the trajectory. The
linear version fails to complete a lap at higher speeds, as
oscillations cause it to collide with the track boundaries, and
Pure Pursuit crashes due to under-steering in the third corner.
The MAP controller with Pacejka tire model again achieves
the lowest tracking error and deviation. Using the linear tire
model resulted in a ten-fold increase in average lateral error
during the two laps driven before the crash. It is therefore
clear that having a precise tire model capable of capturing the
non-linear tire dynamics is key to achieving high performance
in autonomous racing.

Cglob Controller tµlap [s] |dµ| [m] |dmax| [m]

Pure Pursuit 8.74 0.115 0.33
0.7 MAP with linear 8.10 0.074 0.20

MAP with Pacejka 8.29 0.048 0.18
Pure Pursuit N.C. (7.93*) N.C. (0.220*) N.C. (0.53*)

0.8 MAP with linear N.C. (7.35**) N.C.(0.55**) N.C.(0.32**)
MAP with Pacejka 7.39 0.055 0.23

Table I: Lap times, average and maximum deviation from the
trajectory for Pure Pursuit, MAP with linear tire model, and
nominal MAP with Pacejka tire model.
N.C.: Not Completed
*: Crashed after one lap
**Unstable and crashed after two laps

D. Race Results

The MAP controller with Pacejka tire parameters was
deployed on the real racecar also in the 2022 F1TENTH
Autonomous Grand Prix Germany, obtaining the best perfor-
mance in the field, winning the competition and achieving
the fastest lap time, reaching speeds over 8m/s and lateral

accelerations of 1.25 g. By measuring the maximal lateral
force that could be applied to the racecar with a spring balance,
resulting in 45N and the car’s weight of 3.5 kg, affirming the
claim that the racecar can operate at the edge of friction.

V. CONCLUSIONS

We presented MAP, a highly performant racing controller
suitable for computationally constrained hardware, that incor-
porates model dynamics while remaining simple to implement
and operate. The proposed controller significantly outperforms
SotA geometric controllers while conserving their benefits of
design simplicity and real-time computational feasibility. By
leveraging model knowledge and incorporating tire models
capturing lateral tire slip into the control law, tracking
performance is increased four-fold during our tests at higher
velocities of up to 11m/s.

Future work will focus on adaptive tire parameter estimation
for the MAP controller such that system identification would
not be needed to be recomputed offline in different racing
environments and an in-depth comparison with MPC under
realistic conditions. Furthermore, testing the behavior on a full-
scaled racing car would be of great interest. The full MAP
code is available on Github: https://github.com/ETH-PBL/
MAP-Controller.

ACKNOWLEDGMENT

The authors would like to thank all team members of the
ForzaETH racing team, as well as Dr. Christian Vogt and
Dr. Andrea Carron of ETH Zürich, for their constructive and
fruitful algorithmic discussions.

REFERENCES

[1] S. Jarvenpaa and W. Standaert, “Emergent ecosystem for
radical innovation: Entrepreneurial probing at formula
e,” in Proceedings of the 50th HICSS, 2017.

https://github.com/ETH-PBL/MAP-Controller
https://github.com/ETH-PBL/MAP-Controller


[2] M. Finn, “From accelerated advertising to fanboost:
mediatized motorsport,” Sport in Society, vol. 24,
no. 6, pp. 937–953, 2021. [Online]. Available:
https://doi.org/10.1080/17430437.2019.1710131

[3] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle,
M. Behl, V. Krovi, and R. Mangharam, “Autonomous
vehicles on the edge: A survey on autonomous vehicle
racing.” [Online]. Available: https://arxiv.org/abs/2202.
07008

[4] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim,
“A direct visual servoing-based framework for the 2016
IROS autonomous drone racing challenge,” J. field robot.,
vol. 35, no. 1, pp. 146–166, Jan. 2018.

[5] M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong,
and R. Mangharam, “Tunercar: A superoptimization
toolchain for autonomous racing,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2020, pp. 5356–5362.

[6] A. Wischnewski, M. Geisslinger, J. Betz, T. Betz,
F. Fent, A. Heilmeier, L. Hermansdorfer, T. Herrmann,
S. Huch, P. Karle, F. Nobis, L. Ögretmen, M. Rowold,
F. Sauerbeck, T. Stahl, R. Trauth, M. Lienkamp,
and B. Lohmann, “Indy autonomous challenge –
autonomous race cars at the handling limits,” 2022.
[Online]. Available: https://arxiv.org/abs/2202.03807

[7] J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl,
L. Hermansdorfer, and M. Lienkamp, “A software archi-
tecture for an autonomous racecar,” in 2019 IEEE 89th
Vehicular Technology Conference (VTC2019-Spring),
2019, pp. 1–6.

[8] J. Kabzan, M. I. Valls, V. J. F. Reijgwart, H. F. C.
Hendrikx, C. Ehmke, M. Prajapat, A. Bühler, N. Gos-
ala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari,
N. Karnchanachari, S. Brits, M. Dangel, I. Sa, R. Dubé,
A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros, and
R. Siegwart, “AMZ driverless: The full autonomous
racing system,” J. field robot., no. rob.21977, Aug. 2020.

[9] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam,
“F1tenth: An open-source evaluation environment for con-
tinuous control and reinforcement learning,” in NeurIPS
2019 Competition and Demonstration Track. PMLR,
2020, pp. 77–89.

[10] J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan,
and J. Lygeros, “Optimization-based hierarchical motion
planning for autonomous racing,” 2020. [Online].
Available: https://arxiv.org/abs/2003.04882

[11] A. Liniger, A. Domahidi, and M. Morari, “Optimization-
based autonomous racing of 1:43 scale rc cars,”
Optimal Control Applications and Methods, vol. 36,
no. 5, p. 628–647, Jul 2014. [Online]. Available:
http://dx.doi.org/10.1002/oca.2123

[12] A. Liniger, “Pushing the limits of friction: A story of
model mismatch,” 2021, iCRA21 Autonomous Racing.
[Online]. Available: https://www.youtube.com/watch?v=
_rTawyZghEg&t=136s

[13] H. B. Pacejka and E. Bakker, “The magic formula tyre
model,” Vehicle system dynamics, vol. 21, no. S1, pp.

1–18, 1992.
[14] V. Sezer and M. Gokasan, “A novel obstacle avoidance

algorithm: “follow the gap method”,” Robotics and
Autonomous Systems, vol. 60, no. 9, pp. 1123–1134,
2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0921889012000838

[15] N. Otterness, “The "disparity extender" algorithm, and
f1/tenth,” April 2019.

[16] P. Polack, F. Altché, B. d’Andréa Novel, and
A. de La Fortelle, “The kinematic bicycle model: A
consistent model for planning feasible trajectories for
autonomous vehicles?” in 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 812–818.

[17] J. M. Snider, “Automatic Steering Methods for
Autonomous Automobile Path Tracking,” February
2009. [Online]. Available: https://www.ri.cmu.edu/
pub_files/2009/2/Automatic_Steering_Methods_for_
Autonomous_Automobile_Path_Tracking.pdf

[18] C. Lyu, D. Lu, C. Xiong, R. Hu, Y. Jin, J. Wang, Z. Zeng,
and L. Lian, “Toward a gliding hybrid aerial underwater
vehicle: Design, fabrication, and experiments,” J. field
robot., vol. 39, no. 5, pp. 543–556, Aug. 2022.

[19] A. Gonzalez, A. Castillo, P. Garcia, and P. Albertos,
“Robust stabilization of time-varying delay systems
with predictor-observer based controller,” IFAC-
PapersOnLine, vol. 52, no. 1, pp. 213–218, 2019, 12th
IFAC Symposium on Dynamics and Control of Process
Systems, including Biosystems DYCOPS 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S2405896319301491

[20] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury,
W. Fu, A. Faust, G. C. de Croon, and V. J. Reddi, “Tiny
robot learning (tinyrl) for source seeking on a nano
quadcopter,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp.
7242–7248.

[21] S. An, F. Zhou, M. Yang, H. Zhu, C. Fu, and K. A.
Tsintotas, “Real-time monocular human depth estimation
and segmentation on embedded systems,” in 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2021, pp. 55–62.

[22] S. Park, J. Deyst, and J. How, “A new nonlinear
guidance logic for trajectory tracking,” in AIAA Guid-
ance, Navigation, and Control Conference and Exhibit.
Reston, Virigina: American Institute of Aeronautics and
Astronautics, Aug. 2004.

[23] A. Jain, M. O’Kelly, P. Chaudhari, and M. Morari,
“BayesRace: Learning to race autonomously using
prior experience,” arXiv:2005.04755 [cs, eess], Nov.
2020, arXiv: 2005.04755. [Online]. Available: http:
//arxiv.org/abs/2005.04755

[24] L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N.
Zeilinger, and A. Carron, “Model learning and contextual
controller tuning for autonomous racing,” 2021.

[25] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza,
and P. Durr, “Super-human performance in gran
turismo sport using deep reinforcement learning,”

https://doi.org/10.1080/17430437.2019.1710131
https://arxiv.org/abs/2202.07008
https://arxiv.org/abs/2202.07008
https://arxiv.org/abs/2202.03807
https://arxiv.org/abs/2003.04882
http://dx.doi.org/10.1002/oca.2123
https://www.youtube.com/watch?v=_rTawyZghEg&t=136s
https://www.youtube.com/watch?v=_rTawyZghEg&t=136s
https://www.sciencedirect.com/science/article/pii/S0921889012000838
https://www.sciencedirect.com/science/article/pii/S0921889012000838
https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
https://www.sciencedirect.com/science/article/pii/S2405896319301491
https://www.sciencedirect.com/science/article/pii/S2405896319301491
http://arxiv.org/abs/2005.04755
http://arxiv.org/abs/2005.04755


IEEE Robotics and Automation Letters, vol. 6,
no. 3, p. 4257–4264, Jul 2021. [Online]. Available:
http://dx.doi.org/10.1109/LRA.2021.3064284

[26] Y. Song, H. Lin, E. Kaufmann, P. Dürr, and D. Scara-
muzza, “Autonomous overtaking in gran turismo sport
using curriculum reinforcement learning,” in 2021 IEEE
International Conference on Robotics and Automation
(ICRA), 2021, pp. 9403–9409.

[27] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza,
“Autonomous Drone Racing with Deep Reinforcement
Learning,” arXiv:2103.08624 [cs], Aug. 2021, arXiv:
2103.08624. [Online]. Available: http://arxiv.org/abs/
2103.08624

[28] M. Althoff, M. Koschi, and S. Manzinger,
“CommonRoad: Composable benchmarks for motion
planning on roads,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). Los Angeles, CA, USA:
IEEE, Jun. 2017, pp. 719–726. [Online]. Available:
http://ieeexplore.ieee.org/document/7995802/

[29] V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit
for autonomous racing,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.08873

[30] W.-J. Wang, T.-M. Hsu, and T.-S. Wu, “The improved
pure pursuit algorithm for autonomous driving advanced
system,” in 2017 IEEE 10th International Workshop on
Computational Intelligence and Applications (IWCIA),
2017, pp. 33–38.

[31] R. Wang, Y. Li, J. Fan, T. Wang, and X. Chen, “A novel
pure pursuit algorithm for autonomous vehicles based
on salp swarm algorithm and velocity controller,” IEEE
Access, vol. 8, pp. 166 525–166 540, 2020.

[32] A. Ollero, A. García-Cerezo, and J. Martínez, “Fuzzy
supervisory path tracking of mobile robots1,” IFAC
Proceedings Volumes, vol. 26, no. 1, pp. 277–
282, 1993, 1st IFAC International Workshop on
Intelligent Autonomous Vehicles, Hampshire, UK, 18-21
April. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1474667017493128

[33] L. Chen, N. Liu, Y. Shan, and L. Chen, “A robust look-
ahead distance tuning strategy for the geometric path
tracking controllers,” in 2018 IEEE Intelligent Vehicles
Symposium (IV), 2018, pp. 262–267.

[34] Y. Shan, W. Yang, C. Chen, J. Zhou, L. Zheng, and
B. Li, “Cf-pursuit: A pursuit method with a clothoid
fitting and a fuzzy controller for autonomous vehicles,”
International Journal of Advanced Robotic Systems,
vol. 12, no. 9, p. 134, 2015. [Online]. Available:
https://doi.org/10.5772/61391

[35] F1TENTH Foundation, “Building the F1TENTH Car.”
[Online]. Available: https://f1tenth.org/build.html

[36] C. Voser, R. Y. Hindiyeh, and J. C. Gerdes, “Analysis
and control of high sideslip manoeuvres,” Vehicle System
Dynamics, vol. 48, no. sup1, pp. 317–336, 2010. [Online].
Available: https://doi.org/10.1080/00423111003746140

[37] A. Heilmeier, A. Wischnewski, L. Hermansdorfer,
J. Betz, M. Lienkamp, and B. Lohmann, “Minimum cur-
vature trajectory planning and control for an autonomous

race car,” Vehicle System Dynamics, vol. 58, no. 10, pp.
1497–1527, 10 2020.

http://dx.doi.org/10.1109/LRA.2021.3064284
http://arxiv.org/abs/2103.08624
http://arxiv.org/abs/2103.08624
http://ieeexplore.ieee.org/document/7995802/
https://arxiv.org/abs/2111.08873
https://www.sciencedirect.com/science/article/pii/S1474667017493128
https://www.sciencedirect.com/science/article/pii/S1474667017493128
https://doi.org/10.5772/61391
https://f1tenth.org/build.html
https://doi.org/10.1080/00423111003746140

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Proposed Control System Overview
	Tire Model
	Lookup Table Generation
	Adaptive Lookahead Point

	EXPERIMENTAL RESULTS
	Experimental Setup
	Velocity Scaling of Performance
	Effect of Tire Dynamics
	Race Results

	CONCLUSIONS

